	SHEET LIST TABLE
SHEET NO.	SHEET TITLE
C001	COVER SHEET
C002	SURVEY SETOUT PLAN
C003	OVERALL SERVICES LAYOUT
C004	SAFETY IN DESIGN
C100	ROADWORKS AND DRAINAGE LAYOUT PLAN - SHEET 1
C101	ROADWORKS AND DRAINAGE LAYOUT PLAN - SHEET 2
C200	BULK EARTHWORKS LAYOUT PLAN - SHEET 1
C201	BULK EARTHWORKS LAYOUT PLAN - SHEET 2
C210	BULK EARTHWORKS NOTES AND DETAILS - SHEET 1
C211	BULK EARTHWORKS NOTES AND DETAILS - SHEET 2
C220	EARTHWORKS SUBGRADE ROCK PREPARATION DETAILS
C230	RETAINING WALL SUBSOIL DRAINAGE PLAN - SHEET 1
C231	RETAINING WALL SUBSOIL DRAINAGE PLAN - SHEET 2
C300	ROADWORKS NOTES AND DETAILS
C310	ROAD 73 LONG AND CROSS SECTIONS
C311	ROAD 111 LONG AND SECTION
C312	ROAD 111 CROSS SECTIONS
C313	ROAD 112 LONG SECTION
C314	ROAD 112 CROSS SECTIONS - SHEET 1
C315	ROAD 112 CROSS SECTIONS - SHEET 2
C316	ROAD 112 CROSS SECTIONS - SHEET 3
C317	ROAD 113 LONG SECTION
C318	ROAD 113 CROSS SECTIONS
C319	ROAD 114 LONG AND CROSS SECTIONS
C320	ROAD 118 LONG SECTION
C321	ROAD 118 CROSS SECTIONS
C322	INTERSECTION DETAILS LAYOUT - SHEET 1
C323	INTERSECTION DETAILS LAYOUT - SHEET 2
C330	PAVEMENT MARKINGS AND SIGNAGE LAYOUT PLAN - SHEET 1
C331	PAVEMENT MARKINGS AND SIGNAGE LAYOUT PLAN - SHEET 2
C400	STORMWATER CATCHMENT LAYOUT PLAN
C410	STORMWATER DRAINAGE LONG SECTIONS - SHEET 1
C411	STORMWATER DRAINAGE LONG SECTIONS - SHEET 2
C412	STORMWATER DRAINAGE LONG SECTIONS - SHEET 3
C420	STORMWATER DRAINAGE NOTES AND DETAILS
C430	STORMWATER DRAINAGE STRUCTURE DETAILS
C440	STORMWATER CALCULATIONS 39% AEP STORM - SHEET 1
C441	STORMWATER CALCULATIONS 39% AEP STORM - SHEET 2
C442	STORMWATER CALCULATIONS 1% AEP STORM - SHEET 1
C443	STORMWATER CALCULATIONS 1% AEP STORM - SHEET 2
C500	SEWERAGE LOCALITY PLAN & NOTES
C510	SEWERAGE LAYOUT PLAN - SHEET 1
C511	SEWERAGE LAYOUT PLAN - SHEET 2
C520	SEWERAGE GRAVITY MAIN LONG SECTIONS - SHEET 1
C521	SEWERAGE GRAVITY MAIN LONG SECTIONS - SHEET 2
C522	SEWERAGE GRAVITY MAIN LONG SECTIONS - SHEET 3
C522	SEWERAGE NOTES AND DETAILS
C600	WATER RETICULATION LOCALITY PLAN & NOTES
C610	WATER RETICULATION LAYOUT PLAN - SHEET 1
C611	WATER RETICULATION LAYOUT PLAN- SHEET 2
C620	WATER LIVE CONNECTION AND TYPICAL DETAILS
C700	OVERALL EROSION & SEDIMENT CONTROL KEY PLAN
C701	EROSION AND SEDIMENT CONTROL - BULK EARTHWORKS PHASE
C702	EROSION AND SEDIMENT CONTROL - STABILISATION PHASE
C710	EROSION AND SEDIMENT CONTROL NOTES AND DETAILS
C900	TEMPORARY WORKS - ROADWORKS AND DRAINAGE LAYOUT PLAN - SHEET 1
C901	TEMPORARY WORKS - ROADWORKS AND DRAINAGE LAYOUT PLAN - SHEET 2

EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT TEVIOT ROAD, GREENBANK FOR MIRVAC QLD PTY LTD

GENERAL NOTES

- ALL DIMENSIONS GIVEN ON THESE DRAWINGS ARE IN METRES UNLESS NOTED OTHERWISE.

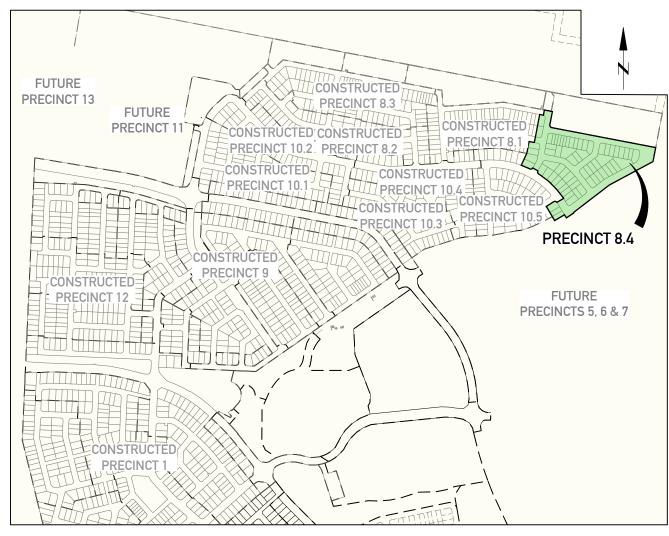
 2. ALL NEW WORK AND MATERIALS SHALL
- COMPLY WITH CURRENT RELEVANT COUNCIL STANDARDS AND SPECIFICATIONS.
- ALL WORK SHALL BE JOINED NEATLY TO EXISTING CONSTRUCTION.
- THE CONTRACTOR IS TO LOCATE, IDENTIFY
 AND ESTABLISH THE CONNECTIVITY OF ALL EXISTING SERVICES WITHIN THE LIMITS OF PROPOSED WORKS AND CONFIRM THIS INFORMATION WITH THE ENGINEER PRIOR TO THE COMMENCEMENT OF WORK.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING ALL MEASURING DEVICES, SAFETY EQUIPMENT AND MACHINERY REQUIRED TO CARRY OUT INSPECTIONS/MEETINGS AS SPECIFIED OR REQUESTED BY THE ENGINEER.
- CONSTRUCTION CERTIFICATION REQUIREMENTS SUCH AS PAVEMENT PROOF ROLLS ETC. ARE TO BE AS PER THE LOGAN CITY COUNCIL SPECIFICATION.
- THESE NOTES SHALL APPLY TO ALL PORTIONS
- 8. THE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH THE SPECIFICATIONS. ANY POINT OF CONFLICT WILL BE RESOLVED BY THE SUPERINTENDENT.
 THE CONTRACTOR IS RESPONSIBLE FOR
- PROVIDING A CONSTRUCTION MANAGEMENT PLAN FOR THE SITE TO BE ACCEPTED BY EDQ. THIS PLAN IS TO INCLUDE ALL ITEMS AS LISTED IN THE DECISION NOTICE AS A

NOISE

 ALL PLANT AND EQUIPMENT SHALL BE
 CONTROLLED TO MINIMISE NOISE EMISSION IN ACCORDANCE WITH AS2436 (GUIDE TO NOISE CONTROL ON CONSTRUCTION. MAINTENANCE AND DEMOLITION). THE SITE WORKING HOURS SHOULD BE IN ACCORDANCE WHERE NOT SPECIFIED THE HOURS SHALL BE-

MONDAY - SATURDAY 7:00am to 6:00pm SUNDAY OR PUBLIC HOLIDAY NO WORK PERMITTED

PRE-CONSTRUCTION & **APPROVALS**


- NO LOCATING/ POTHOLING OF EXISTING SERVICES HAS BEEN CARRIED OUT. THE CONTRACTOR IS TO DETERMINE THE LOCATION AND DEPTH OF ALL EXISTING SERVICES WHICH AFFECT THE WORKS AND REPORT ANY POTENTIAL CLASHES TO THE SUPERINTENDENT PRIOR TO COMMENCEMENT OF ANY CONSTRUCTION WORKS
- THE CONTRACTOR IS RESPONSIBLE FOR ARRANGING WITH THE APPROPRIATE AUTHORITY FOR LOCATING EXISTING SERVICES AND FOR ANY MODIFICATIONS TO EXISTING SERVICES REQUIRED AS A RESULT OF THE WORKS.
 THE CONTRACTOR IS RESPONSIBLE TO
- PROTECT ALL EXISTING SERVICES FROM DAMAGE.
- ANY WORKS DAMAGED AS A RESULT OF CONSTRUCTION ARE TO BE REINSTATED TO RELEVANT AUTHORITY'S REQUIREMENTS AT THE CONTRACTORS COST
- FINISHED SURFACE LEVELS ARE TO BE GRADED UNIFORMLY BETWEEN LEVELS

WORKPLACE HEALTH & SAFETY

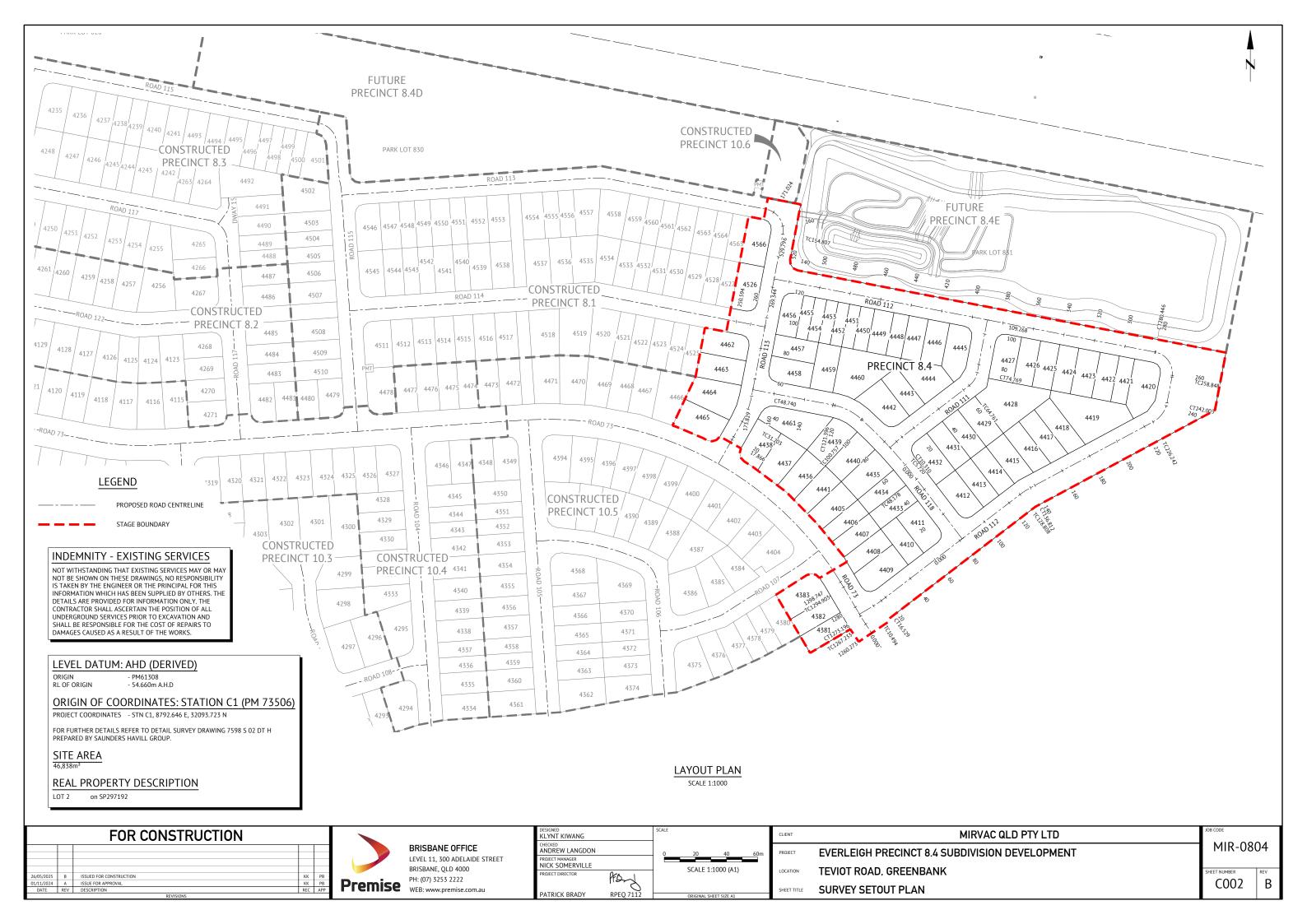
- THE CONTRACTOR SHALL BE THE PRINCIPAL CONTRACTOR AS DESIGNATED BY THE WORK HEALTH AND SAFETY ACT (2011).
- THE CONTRACTOR SHALL PREPARE AND IMPLEMENT A WORKPLACE HEALTH AND SAFETY PLAN AS REQUIRED BY THE WORK HEALTH AND SAFETY ACT (2011).

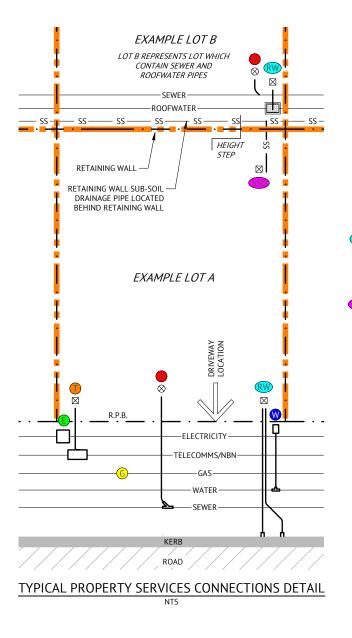
SETOUT NOTES

- CO-ORDINATE SETOUT PROVIDED ON THESE DRAWINGS IS BASED ON A CO-ORDINATE BASE PROVIDED ON THE DETAIL SURVEY DRAWING 7598 S 02 DTH, PREPARED BY SAUNDERS HAVILL GROUP. REFERENCE MARKS AND CORRESPONDING CO-ORDINATES ARE PROVIDED ON DRAWING C002.
- THE LEVEL DATUM FOR WORKS IS A.H.D.

LOCALITY PLAN Scale 1:5000

FOR CONSTRUCTION ISSUED FOR CONSTRUCTION


BRISBANE OFFICE


LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 PH: (07) 3253 2222

DESIGNED KLYNT KIWANG		SCALE			
CHECKED ANDREW LANGDON		0	100	200	300m
PROJECT MANAGER NICK SOMERVILLE			SCALE 1:	5000 (A1)	
PROJECT DIRECTOR	PRONS				
PATRICK BRADY	RPEQ 7112		ORIGINAL SH	IEET SIZE A1	

CLIENT	MIRVAC QLD PTY LTD
PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT
LOCATION	TEVIOT ROAD, GREENBANK
SHEET TITLE	COVER SHEET

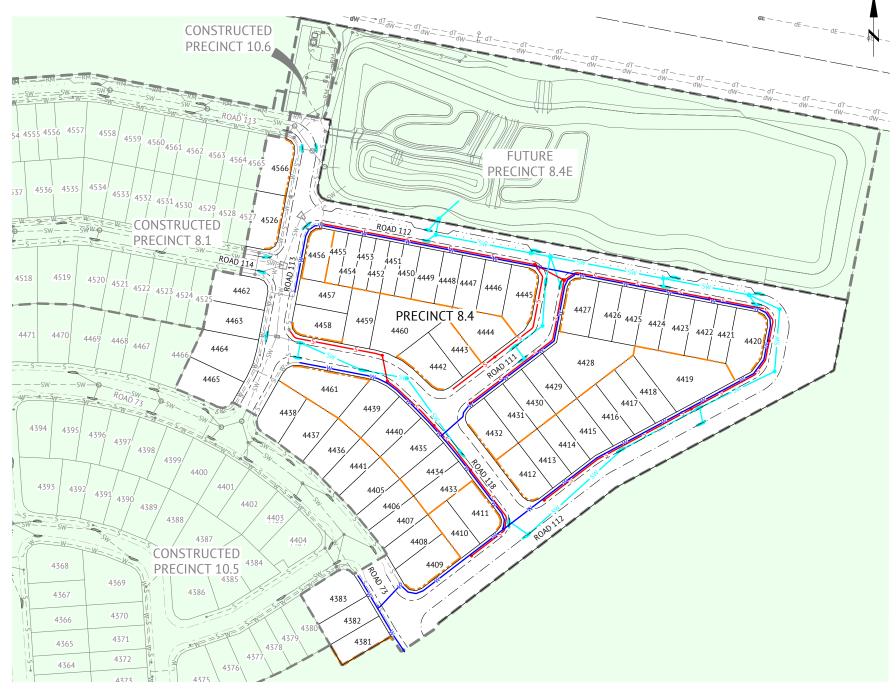
MIR-0804 C001

LEGEND - PROPERTY SERVICE CONNECTIONS

WATER - POLY SERVICE FROM WATER MAIN, METER BOX & COVER INSTALLED. BUILDER TO MAKE APPLICATION TO LOGAN CITY COUNCIL FOR METER ASSEMBLY SUPPLY AND INSTALLATION. WHERE WATER METER IS LOCATED BEHIND RETAINING WALL, 25mm POLYPIPE WILL BE SUPPLIED UNDER WALL INTO LOT AND WILL BE MARKED WITH 900X50X25 HW STAKE LABELLED "WATER".

SEWER - CAPPED Ø100 PVC PIPE (BURIED MAX 1.5m). MARKED WITH 40Ø ORANGE PVC CONDUIT SECURELY TAPED TO H.W. STAKE AT SURFACE (BURIED TO CAPPED PIPE). CONDUIT LABELLED "SEWER."

ROOFWATER - CONNECTION LOCATION CAN BE EITHER FRONT OF LOT VIA KERB ADAPTOR OUTLET TO ROAD, OR REAR OF LOT INTO ROOFWATER DRAINAGE PIPE VIA PIT. CAPPED PVC Ø100 PIPES (BURIED MAX 1.5m) MARKED WITH 900x50x25 HW STAKE LABELLED "ROOFWATER."


RETAINING WALL SUB-SOIL DRAINAGE - OUTLET POINT TO LOT FOR RETAINING WALL SUB-SOIL DRAINAGE TO BE CONNECTED TO YARD DRAINAGE BY BUILDER UNLESS REAR WALL CAN BE DISCHARGED THROUGH THE SUBSOIL ON A SIDE BOUNDARY ON THE LOW SIDE. Ø100 NON-SLOTTED AGG PIPE CAPPED AND TERMINATED 200m ABOVE SURFACE. PVC DUCT TAPED TO 900x50x25 HW STAKE LABELLED "RETAINING WALL SUBSOIL OUTLET".

TELECOMMUNICATIONS/NBN - PVC CONDUIT (BURIED APPROX 300mm), MARKED WITH

ELECTRICITY - ELECTRICITY PILLAR EXISTS IN ROAD VERGE. BUILDER TO MAKE APPLICATION WITH ENERGY PROVIDER FOR SERVICE INSTALLATION TO LOT. WHERE ELECTRICITY PILLAR IS LOCATED BEHIND RETAINING WALL, CONDUIT WILL BE SUPPLIED UNDER WALL INTO LOT AND WILL BE MARKED WITH 900x50x25 HW STAKE LABELLED "ELECTRICITY".

GAS - GAS MAIN EXISTS IN ROAD VERGE. BUILDER/HOME OWNER TO MAKE APPLICATION TO GAS PROVIDER FOR SERVICE INSTALLATION

SERVICE TERMINATION POINT MARKER. 900x50x25 HW STAKE, OR 40Ø ORANGE PVC CONDUIT STAKE

LAYOUT PLAN SCALE 1:1000

LEGEND - PROPOSED LEGEND - CONSTRUCTED STORMWATER GRAVITY SEWER GRAVITY SEWER SEWER RISING MAIN WATER

FOR CONSTRUCTION 25 B ISSUED FOR CONSTRUCTION 24 A ISSUE FOR APPROVAL REV DESCRIPTION

BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 PH: (07) 3253 2222

DESIGNED KLYNT KIWANG		SCALE	
CHECKED ANDREW LANGDON		0	2
PROJECT MANAGER			
NICK SOMERVILLE			SCA
PROJECT DIRECTOR	Prand		50,
DATES OF A DATES	2252 7443		
PATRICK BRADY	RPEO 7112		ORIG

SCALE				
0	20	40	60m	
	SCALE 1:	1000 (A1)	_	

MIRVAC QLD PTY LTD **EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT** TEVIOT ROAD, GREENBANK **OVERALL SERVICES LAYOUT**

MIR-0804 C003

DESIGN HAZARD NOTES:

- 1. PREMISE, HAVING BEEN COMMISSIONED TO CARRY OUT DETAILED DESIGN AND DOCUMENTATION OF THESE WORKS, CONFIRM THAT THE PREMISE DRAWING SET HAS BEEN INTERNALLY REVIEWED FOR DESIGN SAFETY IN ACCORDANCE WITH SECTION 22 OF THE WORK HEALTH AND SAFETY ACT 2011 QLD.
- HEALTH AND SAFETY ACT 2011 QLD.

 2. THIS REPORT SUMMARISES AN INTERNAL REVIEW OF PREMISE'S DETAILED DESIGN DRAWINGS FOR DESIGN SAFETY.

 3. THIS REPORT IN NO WAY RELIEVES THE PRINCIPAL, CONTRACTOR OR ANY OTHER PARTY OF THEIR OWN OBLIGATIONS AND RESPONSIBILITIES UNDER THE WORK HEALTH AND SAFETY ACT 2011 QLD, INCLUDING (BUT NOT LIMITED TO) CONSULTATION WITH THE DESIGNER UNDER SECTION 294 OF THE ACT, THE PREPARATION OF SATISFACTORY SAFE WORK METHOD STATEMENTS AND DUTIES
- OF CARE.

 4. IT IS A REQUIREMENT UNDER SECTION 296 OF THE WORK HEALTH AND SAFETY ACT 2011 QLD, THAT A COPY OF THIS REPORT BE PROVIDED TO THE CONTRACTOR BY THE ENTITY COMMISSIONING THE WORK SHOWN OF THE PREMISE DRAWINGS.

 5. AS PER THE DEPARTMENT OF JUSTICE AND THE ATTORNEY-GENERAL- WORKPLACE HEALTH AND SAFETY QUEENSLAND, A WRITTEN REPORT IS NOT REQUIRED FOR DESIGNS THAT HAVE TYPICAL FEATURES.

CONSEQUENCE TABLE			
LEVEL	CONSEQUENCE	COST/TIME	
5 - CATASTROPHIC	FATALITY OR MULTIPLE PERSONS ONSITE WITH LIFE THREATENING HEALTH EFFECT OR INABILITY TO CONTINUE	HUGE FINANCIAL OR TIME LOSS	
4 - MAJOR	EXTENSIVE INJURIES, OR ONSET OF SEVERE OR LIFE THREATENING HEALTH EFFECT TO SINGLE PERSON ONSITE. MULTIPLE PERSONS WITH ONSET OF IRREVERSIBLE HEALTH EFFECTS. PREMANENT INJURT TO PERSON INSITE.	MAJOR FINANCIAL OR TIME LOSS	
3 - MODERATE	MEDICAL TREATMENT REQUIRED. IRREVERSIBLE HEALTH EFFECT TO A SINGLE PERSON. MULTIPLE PERSONS ONSITE WITH REVERSIBLE HEALTH EFFECTS.	HIGH FINANCIAL OR TIME LOSS	
2 - MINOR	FIRST AID, SINGLE OR MULTIPLE INJURIES AMONGST PERSONS ONSITE. SINGLE PERSON ONSITE WITH MODERATE SHORT TERM REVERSIBLE HEALTH EFFECTS.	MEDIUM FINANCIAL OR TIME LOSS	
1 - INSIGNIFICANT	NO INJURIES. OVER EXPOSURE TO A SINGLE PERSON ONSITE, BUT NO REPORTED HEALTH EFFECTS.	LOW FINANCIAL OR TIME LOSS	

CONSTRUCTION HAZARD NOTES:

1. UNDER THE QUEENSLAND WORK HEALTH AND SAFETY ACT 2011, THE WORK HEALTH AND SAFETY REGULATION 2011 AND OTHER LEGISLATION AND GUIDELINES, THE PRINCIPAL CONTRACTOR HAS SPECIFIC OBLIGATIONS IN RELATION TO THE SAFE OPERATION OF

TO ASSIST THE PRINCIPAL CONTRACTOR IN COMPLYING WITH THESE OBLIGATIONS THE PROJECT DESIGNERS HAVE IDENTIFIED BY DRAWING NOTES, AREAS WHERE POTENTIAL HAZARDS MAY ARISE. THESE NOTES OR ADVICE, SHALL NOT NECESSARILY BE CONSIDERED COMPLETE AND ARE BASED UPON THE DESIGNERS' UNDERSTANDING OF THE SAFETY RISKS ASSOCIATED WITH THE

WURNS.
THESE NOTES OR ADVICE SHALL NOT RELIEVE THE PRINCIPAL CONTRACTOR OF ANY OBLIGATION UNDER THE RELEVANT LEGISLATION
OR GUIDELINE. THE PRINCIPAL CONTRACTOR SHALL REMAIN RESPONSIBLE FOR THE PREPARATION OF AN APPROPRIATE WORK HEALTH SAFETY MANAGEMENT PLAN AND SAFE WORK METHOD STATEMENTS FOR THE SITE.
2. PURSUANT TO THE WORK HEALTH AND SAFETY ACT 2011 WE HEREBY ADVISE THAT OUR DESIGN SAFETY REVIEW HAS IDENTIFIED

UNUSUAL OR ATYPICAL DESIGN FEATURES THAT MAY PRESENT ADDITIONAL HAZARDS OR RISKS DURING THE CONSTRUCTION PHASE AND THESE ARE LISTED IN THE CONSTRUCTION HAZARD SCHEDULE.

	RISK ANALYSIS MATRIX						
	1 - INSIGNIFICANT 2 - MINOR 3 - MODERATE 4 - MAJOR 5 - CATASTROPHIC						
	A - ALMOST CERTAIN	MODERATE	HIGH	EXTREME	EXTREME	EXTREME	
OO	B - LIKELY	MODERATE	HIGH	HIGH	EXTREME	EXTREME	
ELIHOOD	C - POSSIBLE	LOW	MODERATE	HIGH	EXTREME	EXTREME	
LIKEL	D - UNLIKELY	LOW	LOW	MODERATE	HIGH	EXTREME	
	E - RARE	LOW	LOW	MODERATE	HIGH	HIGH	

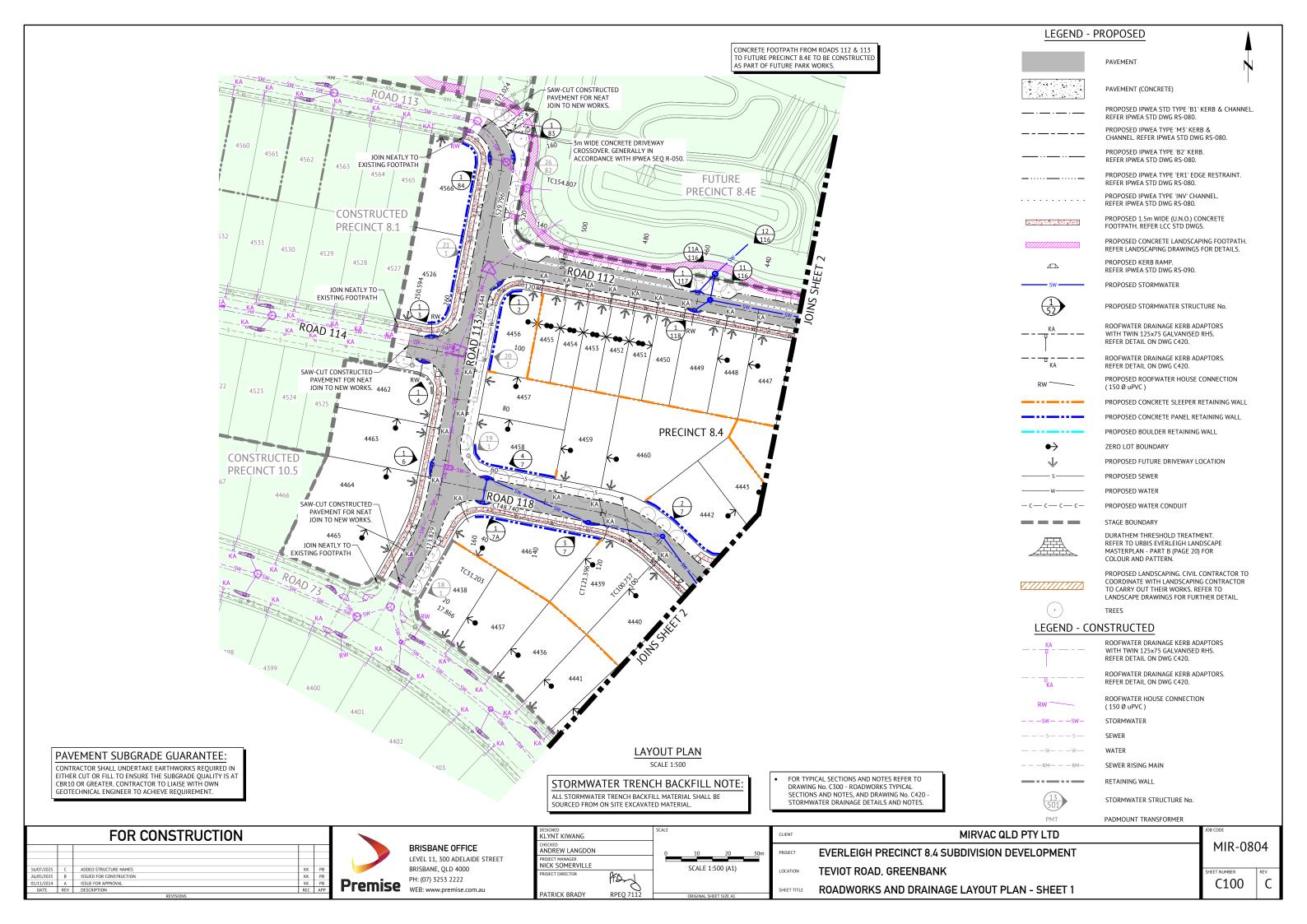
RISK EVALUATION TABLE			
RISK LEVEL	ACTION REQUIRED		
EXTREME	UNACCEPTABLE RISK. RE-DESIGN REQUIRED. DO NOT PROCEED WITHOUT ADDITIONAL CONTROLS.		
HIGH	UNACCEPTABLE RISK. ADDITIONAL CONTROLS NEEDED. CONSIDER FURTHER REVIEW AND CONSIDER RE-DESIGN		
MODERATE	RISK MAY BE ACCEPTABLE. MANAGEMENT TO DETERMINE ACTIONS REQUIRED		
LOW	ACCEPTABLE. MANAGE RISK THROUGH ROUTINE PROCEDURES AND OTHER ADMINISTRATIVE CONTROLS		

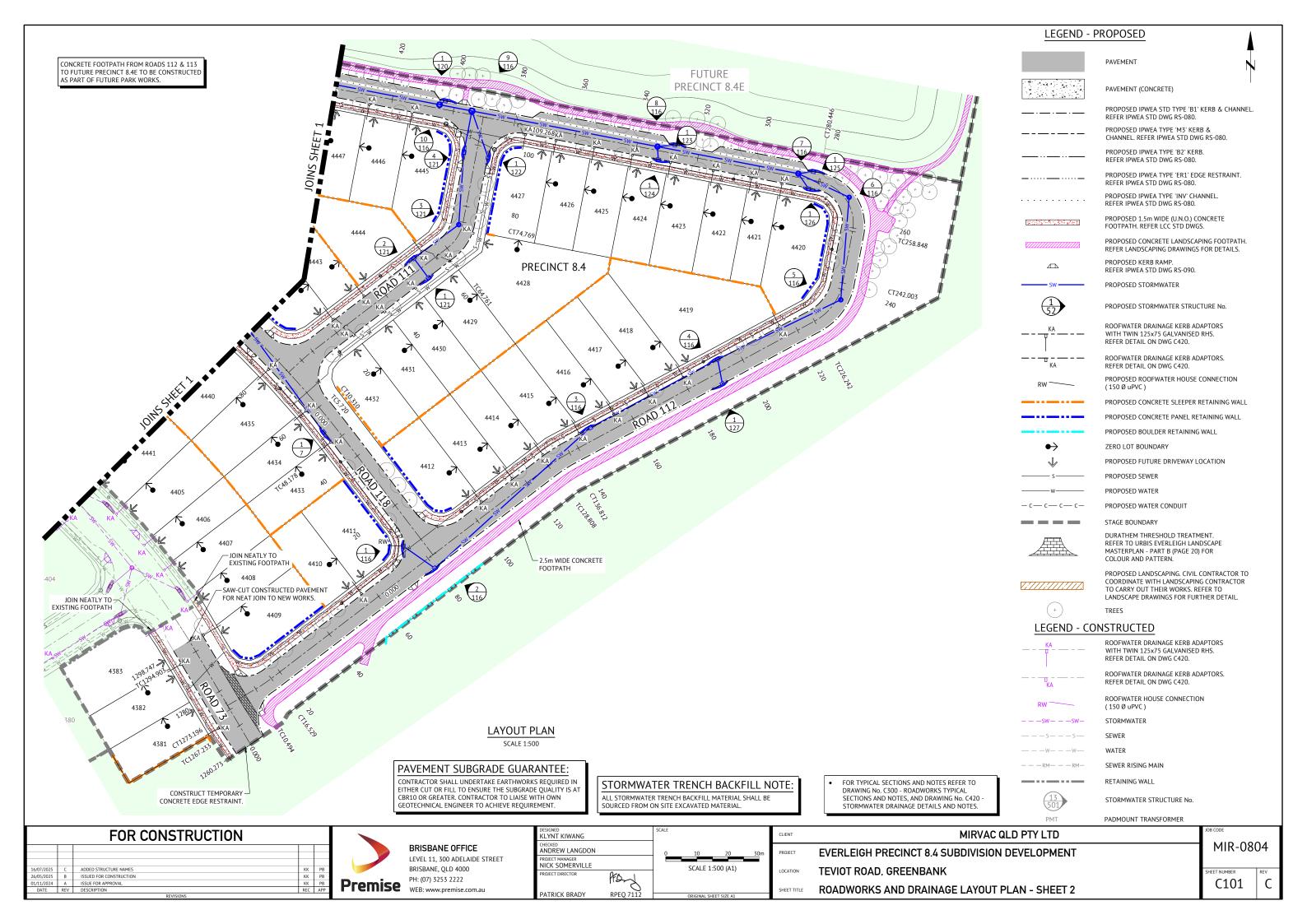
LIKELIHOOD TABLE			
LEVEL	DESCRIPTION	QUANTIFICATION GUIDE	
A - ALMOST CERTAIN	THE EVENT IS EXPECTED TO OCCUR IN MOST CERTAIN CIRCUMSTANCES	MORE THAN ONCE PER YEAR	
B - LIKELY	THE EVENT WILL PROBABLY OCCUR IN MOST CIRCUMSTANCES	AT LEAST ONCE IN 5 YEARS	
C - POSSIBLE	THE EVEN T SHOULD OCCUR AT SOME TIME	AT LEAST ONCE IN 10 YEARS	
D - UNLIKELY	THE EVENT COULD OCCUR AT SOME TIME	AT LEAST ONCE IN 30 YEARS	
E - RARE	THE EVENT MAY OCCUR IN EXCEPTIONAL CIRCUMSTANCES	LESS THAN ONCE IN 30 YEARS	

FOR CONSTRUCTION					
		10110011011			
26/05/2025	В	ISSUED FOR CONSTRUCTION	KK	PB	
01/11/2024	Α	ISSUE FOR APPROVAL	KK	PB	
DATE	REV	DESCRIPTION	REC	APP	
REVISIONS					

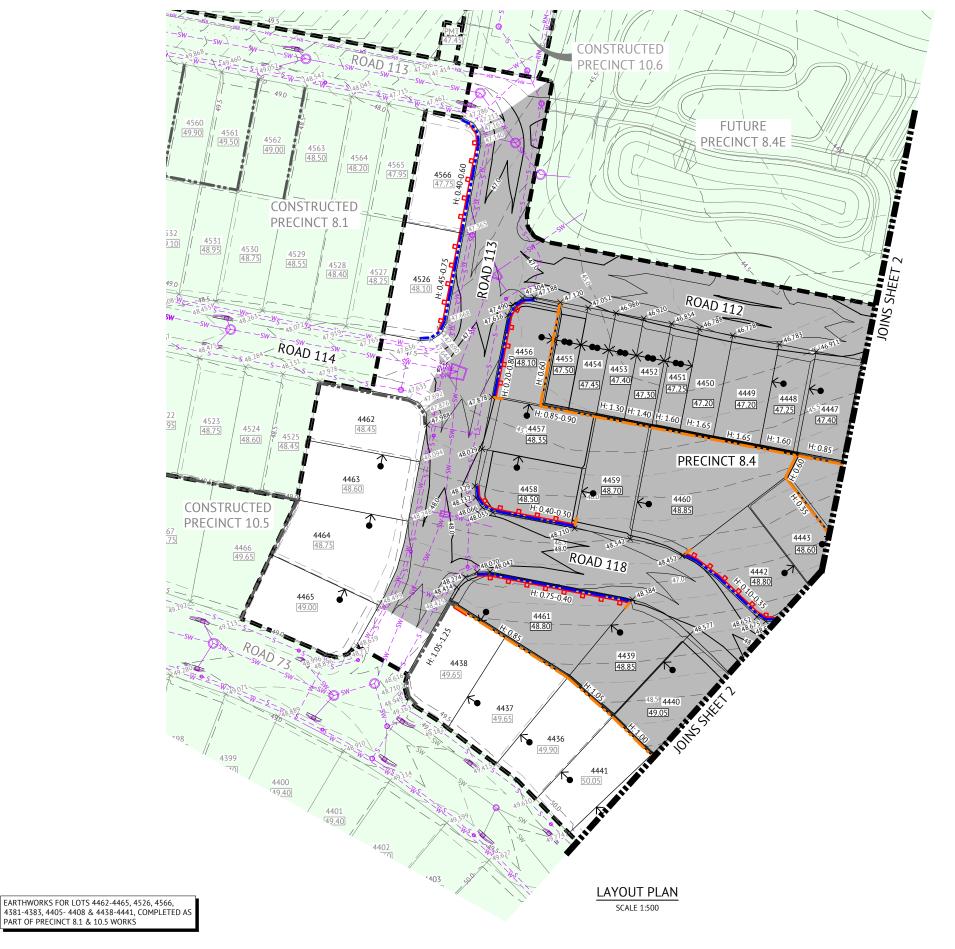
BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 PH: (07) 3253 2222

DESIGNED KLYNT KIWANG		SCALE
CHECKED ANDREW LANGDON		
PROJECT MANAGER NICK SOMERVILLE		
PROJECT DIRECTOR	Prand	
PATRICK BRADY	RPEQ 7112	

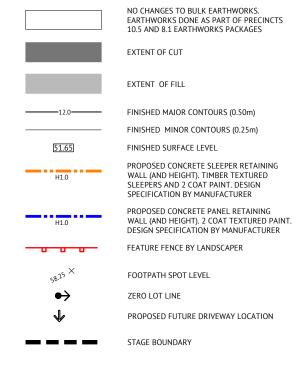

	CLIENT
	PROJECT
	LOCATION
SIZE A1	SHEET TITL


CLIENT	MIRVAC QLD PTY LTD
PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT
LOCATION	TEVIOT ROAD, GREENBANK
SHEET TITLE	SAFETY IN DESIGN

MIR-0804


	DESIGN HAZARD SCHEDULE						
ITEM	TEM DESIGN HAZARD POTENTIAL HAZARD RISK ELIMINATION / MINIMISATION OF HAZARD / RISK		RESIDUAL RISK				
D1	URBAN LAYOUT HAZARD	THE URBAN LAYOUT IS DESIGNED AROUND A PARTICULAR HAZARD : INTERSECTION IS UNCLEAR WHICH ROAD HAS PRIORITY	HIGH	THE HAZARD HAS BEEN REDUCED/ELIMINATED BY: LINE MARKED INTERSECTION TO ENSURE IT IS CLEAR WHICH ROAD HAS PRIORITY - DESIGN VEHICLE SWEPT PATH CHECKED FOR COMPLIANCE	LOW		
D2		EXISTING UNDERGROUND AND/OR OVERHEAD SERVICES HAZARD EXIST ON SITE AND NEEDS TO BE REMOVED AND RELOCATED.	HIGH	THE DESIGN OF THE PROJECT HAS INCORPORATED THE RELOCATION OF THESE EXISTING SERVICES AND THE CONTRACTOR IS TO BE MADE AWARE OF THESE EXISTING SERVICES AND TAKE ALL ACTIONS NECESSARY TO MITIGATE THIS HAZARD DURING CONSTRUCTION.	MEDIUM		
D3	DEEP EXCAVATION HAZARD	DEEP EXCAVATION IS REQUIRED TO INSTALL SEWER TO SERVICE STRUCTURE.	HIGH	THE DEEP EXCAVATION HAZARD CANNOT BE AVOIDED AND THE CONTRACTOR WILL NEED TO TAKE ALL ACTIONS NECESSARY TO ADDRESS THIS HAZARD DURING CONSTRUCTION.	MEDIUM		
D4	HIGH RETAINING WALLS	SOME AREAS OF WORKS CONTAIN HIGH RETAINING WALLS WHERE LAND MORPHOLOGY DICTATES.	HIGH	HIGH RETAINING WALLS CANNOT BE AVOIDED DUE TO EXISTING LAND MORPHOLOGY. SINGLE TIER WALLS HAVE LIMITED TO A MAX HEIGHT OF 2m. CONTRACTOR WILL NEED TO TAKE ALL ACTIONS NECESSARY TO ADDRESS THIS HAZARD DURING CONSTRUCTION.	MEIDUM		
D5	WATER BODIES	PROPOSED CONSTRUCTION WATER DAMS WILL BE PRESENT ON SITE.	MEDIUM	PROPOSED WATER BODIES HAVE BEEN LOCATED AWAY FROM PUBLIC ACCESS AREAS. ACCESS TO THESE LOCATION WILL BE RESTRICTED FROM THE PUBLIC. CONTRACTOR WILL NEED TO TAKE ALL ACTIONS NECESSARY TO ADDRESS THIS HAZARD DURING CONSTRUCTION.	LOW		

	CONSTRUCTION HAZARD SCHEDULE					
ITEM	POTENTIAL HAZARD	POSSIBLE PREVENTATIVE ACTION				
C1	DEEP EXCAVATION HAZARD	ALL STEPS MUST BE TAKEN TO OBTAIN CURRENT UNDERGROUND SERVICES INFORMATION BEFORE EXCAVATION WORKS COMMENCE. EXCAVATION WORK MUST BE UNDERTAKEN BY APPROPRIATELY EXPERIENCED AND QUALIFIED PERSONNEL. EXCAVATIONS SHALL BE ADEQUATELY SHORED AND APPROPRIATE BARRICADES AND SIGNAGE ERECTED, IF REQUIRED.				
C2	OVERHEAD POWER HAZARD	WARNING SIGNS AND MARKERS SHALL BE ERECTED ADVISING OF THE PRESENCE OF LIVE OVERHEAD CABLES. A REPRESENTATIVE OF THE SUPPLY AUTHORITY SHALL REMAIN ON SITE DURING EARTHWORKS AND ANY OTHER HIGH RISK WORKS, IF REQUIRED.				
C3	UNDERGROUND ELECTRICAL, TELECOMMUNICATION, GAS AND WATER MAIN HAZARD	WARNING SIGNS AND MARKERS SHALL BE ERECTED ADVISING OF THE PRESENCE OF THE EXISTING SERVICE. THE SERVICE SHALL BE IDENTIFIED AND MARKED BY THE SUPPLY AUTHORITY PRIOR TO THE COMMENCEMENT OF EXCAVATION. A REPRESENTATIVE OF THE SUPPLY AUTHORITY SHALL REMAIN ON SITE DURING THE EXCAVATION WORK, IF REQUIRED.				
C4	WORKS NEAR RAIL, AIRPORTS AND ROADS HAZARD	ALL REQUIRED PERMITS, APPROVALS AND SAFETY REQUIREMENTS FROM THE RELEVANT AUTHORITY SHOULD BE OBTAINED PRIOR TO COMMENCING WORK. A REPRESENTATIVE OF THE RELEVANT AUTHORITY SHALL REMAIN ON SITE DURING CONSTRUCTION WHILE THE HAZARD REMAINS.				
C5	PEDESTRIAN ACCESS HAZARD	WORK WITHIN OR ADJACENT TO AREAS WHICH THE PUBLIC REQUIRES PEDESTRIAN ACCESS MUST HAVE APPROPRIATE BARRICADES AND SIGNAGE ERECTED AT ALL TIMES.				
C6	POTENTIAL VEHICLE HAZARD	SITE PERSONNEL SHALL BE ADVISED OF THE POTENTIAL HAZARDS AND THE APPROPRIATE PROCEDURES FOR WORKING ADJACENT TO OPERATING PUBLIC ROADS. APPROPRIATE SAFETY CLOTHING SHALL BE WORN AND THE REQUIRED SIGNAGE SHALL BE ERECTED. THE WORKS SHALL BE UNDERTAKEN IN A MANNER WHICH DOES NOT COMPROMISE THE SAFETY OF THE VEHICLE OCCUPANTS OR THE SITE PERSONNEL.				
C7	DEMOLITION AND CLEARING HAZARD	SUITABLE QUALIFIED AND EXPERIENCED PERSONNEL SHALL BE RESPONSIBLE FOR THE DEMOLITION AND CLEARING WORKS FOR THE PROJECT AT ALL TIMES. THE CONTRACTORS WORK METHOD STATEMENT SHALL ALSO GIVE CONSIDERATION TO FALLING DEBRIS, COLLAPSE AND DANGEROUS AIRBORNE AGENTS.				
C8	TRAFFIC MANAGEMENT HAZARD	SUITABLE QUALIFIED AND EXPERIENCED PERSONNEL SHALL BE RESPONSIBLE FOR THE SAFE AND ORDERLY PASSAGE OF VEHICULAR AND PEDESTRIAN TRAFFIC THROUGH THE PROJECT AT ALL TIMES. THE CONTRACTOR SHALL DEVELOP A TRAFFIC MANAGEMENT PLAN (TMP) FOR THE PROJECT TO ESTABLISH APPROPRIATE CONTROLS IN ACCORDANCE WITH THE MANUAL FOR UNIFORM TRAFFIC CONTROL.				
С9	ASBESTOS HAZARD	ALL PERSONNEL SHOULD BE ADVISED OF THE POTENTIAL PRESENCE OF ASBESTOS AND AN IDENTIFICATION AND ACTION PLAN SHALL BE PUT IN PLACE. SAMPLING AND IDENTIFICATION IS TO BE UNDERTAKEN IN ACCORDANCE WITH WORKPLACE HEALTH AND SAFETY REGULATIONS. IF SAMPLING CONFIRMS THE PRESENCE OF ASBESTOS THEN THE ACTION PLAN IS TO BE IMPLEMENTED TO REMEDIATE THE SITE.				
C10	POTENTIAL ROCK FALL	LAND ABOVE THE SITE HAS BEEN CLEARED AND SOME EARTHWORKS HAS BEEN UNDERTAKEN CREATING A POTENTIAL ROCK FALL HAZARD. SUITABLE PERSONNEL SHALL BE RESPONSIBLE FOR IDENTIFYING ANY POTENTIAL HAZARD AND THE CONTRACTOR SHALL TAKE APPROPRIATE ACTION TO ELIMINATE THE HAZARD.				



LEGEND - PROPOSED

LEGEND - CONSTRUCTED

CONTOURS (0.50m) STORMWATER SEWER SEWER RISING MAIN WATER PADMOUNT TRANSFORMER PMT

NOTES

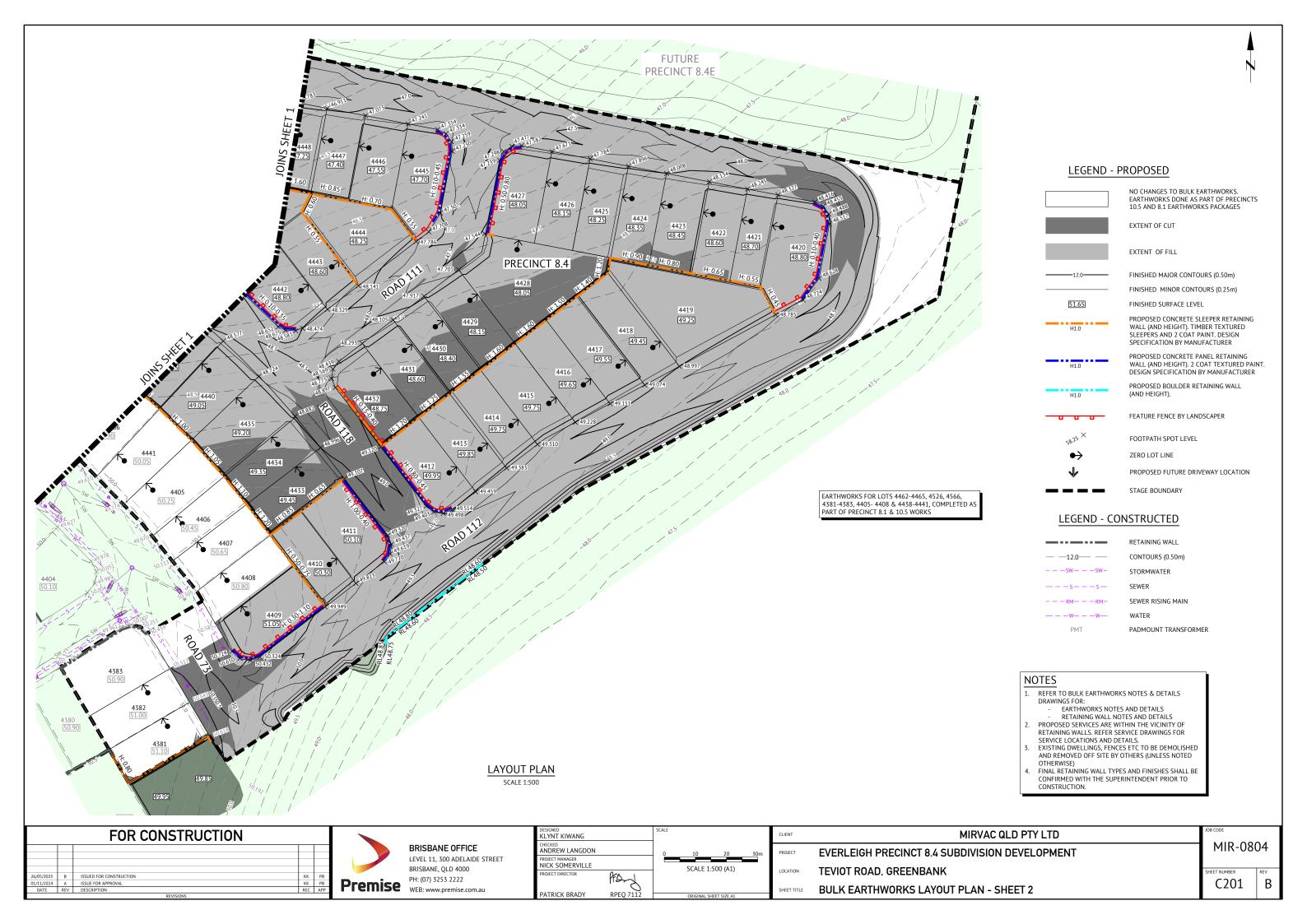
- REFER TO BULK EARTHWORKS NOTES & DETAILS DRAWINGS FOR:
- DRAWINGS FOR:

 EARTHWORKS NOTES AND DETAILS


 RETAINING WALL NOTES AND DETAILS
 PROPOSED SERVICES ARE WITHIN THE VICINITY OF
 RETAINING WALLS. REFER SERVICE DRAWINGS FOR SERVICE LOCATIONS AND DETAILS.
 EXISTING DWELLINGS, FENCES ETC TO BE DEMOLISHED
- AND REMOVED OFF SITE BY OTHERS (UNLESS NOTED OTHERWISE)
- FINAL RETAINING WALL TYPES AND FINISHES SHALL BE CONFIRMED WITH THE SUPERINTENDENT PRIOR TO

FOR CONSTRUCTION					
26/05/2025	В	ISSUED FOR CONSTRUCTION	KK	PB	
01/11/2024	Α	ISSUE FOR APPROVAL	KK	PB	
DATE	REV	DESCRIPTION	REC	APP	

PART OF PRECINCT 8.1 & 10.5 WORKS


BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 PH: (07) 3253 2222 Premise PH: (U/) 3233 2222 WEB: www.premise.com.au

LYNT KIWANG CHECKED ANDREW LANGDON NICK SOMERVILLE PATRICK BRADY

MIRVAC QLD PTY LTD **EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT** TEVIOT ROAD, GREENBANK **BULK EARTHWORKS LAYOUT PLAN - SHEET 1**

MIR-0804

NOTES

- LOCATION & LEVELS OF ALL EXISTING SERVICES TO BE CONFIRMED ON SITE
- BY CONTRACTOR PRIOR TO THE COMMENCEMENT OF CONSTRUCTION.
 EARTHWORKS DRAWINGS ARE TO BE READ IN CONJUNCTION WITH EROSION AND SEDIMENT CONTROL LAYOUT PLANS AND EROSION AND SEDIMENT
- ALL EARTHWORKS TO BE CARRIED OUT UNDER 'LEVEL ONE' GEOTECHNICAL
- CONTROL IN ACCORDANCE WITH LOCAL AUTHORITIES AND AS3798. EXCESS CUT TO BE STOCKPILED IN THE LOCATION SHOWN OR AS DIRECTED
- ALL BATTERS ARE 1 IN 4 UNLESS SHOWN OTHERWISE.
- CONTRACTOR TO INSTALL TEMPORARY CONSTRUCTION FENCING ALONG THE FULL PERIMETER BOUNDARY INCLUDING APPROPRIATE SIGNAGE.

TESTING

THE SUPERINTENDENT MAY ORDER ADDITIONAL TESTS. REFER TO THE LOCAL AUTHORITIES SPECIFICATION FOR STANDARDS OF COMPACTION AND MATERIAL STANDARDS. FAILED TESTS WILL BE AT THE CONTRACTOR'S

EARTHWORKS TESTING

CONTROL NOTES AND DETAILS.

COMPACTION TESTS

LOCA	TION	AREA PER TEST
FINISHED LEVEL OF (IN CUT OR FILL)	R ROAD SUBGRADE	
LOWEST TWO LEVE EMBANKMENT (PER		REFER TO THE
OTHER LAYERS OF	EMBANKMENT	SPECIFICATION
PREPARED NATURA UNDER EMBANKME		

- QUALITY TESTS
- QUALITY TESTS OF IMPORTED MATERIAL ARE REQUIRED AS SET OUT BY I OCAL ALITHORITY
- SUBGRADE TESTS
- THE NUMBER AND LOCATION OF PAVEMENT SUBGRADE TESTS SHALL BE IN ACCORDANCE WITH LOGAN CITY COUNCIL SPECIFICATION REQUIREMENTS.

DUST

- NO VISIBLE DUST EMISSIONS MUST OCCUR AT THE BOUNDARIES OF THE SITE DURING EARTHWORKS AND CONSTRUCTION ACTIVITIES ON THE SITE DUST CONTROL TESTING SHALL BE CONDUCTED IN ACCORDANCE WITH AS/NZS3580.10.1:2003. DUST CONTROL SHALL COMPLY WITH THE NSW DEPARTMENT OF ENVIRONMENT AND CONSERVATION REPORT "APPROVED METHODS & GUIDANCE FOR THE MODELLNG AND ASSESSMENT OF AIR
- THE CONTRACTOR SHALL IMPLEMENT AND MAINTAIN CONTROLS TO ACHIEVE THE REQUIREMENTS OF ITEM 1 ABOVE.

FILL MANAGEMENT

- ALL FILL MATERIAL WILL BE PLACED IN ACCORDANCE WITH THE FILL SPECIFICATION PROVIDED ON THIS SHEET, OR WHERE PROVIDED, THE REQUIREMENTS OF THE GEOTECHNICAL REPORT SPECIFIC TO THIS CONTRACT
- THE FILL MATERIAL WILL COMPRISE ONLY OF NATURAL EARTH AND ROCK AND SHALL BE FREE OF ALL CONTAMINATES, NOXIOUS, HAZARDOUS, DELETERIOUS AND ORGANIC MATERIAL.
- ALL SITE PREPARATION WORK SHOULD GENERALLY BE CARRIED OUT IN ACCORDANCE WITH AS3798 'GUIDELINES ON EARTHWORKS FOR
- COMMERCIAL AND RESIDENTIAL DEVELOPMENTS'.
 THE SITE SHOULD BE STRIPPED OF ANY TOPSOIL FROM CUT AND FILL AREAS, ROAD ALIGNMENTS AND CARPARKING AREAS, AND STOCKPILED FOR LATER
- PRIOR TO THE PLACEMENT OF ANY STRUCTURAL FILL THE SITE SHOULD BE PROOF ROLLED USING A MINIMUM 10 TONNE (STATIC WEIGHT) PADFOOT ROLLER. ANY LOOSE OR SOFT AREAS SHOULD BE REMOVED AND RECOMPACTED OR REPLACED USING A COMPACTED SELECT FILL.
- DEPRESSIONS FORMED BY THE REMOVAL OR VEGETATION, EXISTING STRUCTURES LINDERGROUND SERVICES FTC SHOULD HAVE ALL DISTURBED. SOIL CLEANED OUT AND BE BACKFILLED WITH COMPACTED SELECT FILL
- ALL COMPLIANCE TESTING SHALL BE CARRIED OUT BY THE GEOTECHNICAL ENGINEER WHO WILL BE ENGAGED BY THE PRINCIPAL CONTRACTOR. ANY/ALL TESTING NECESSARY FOR GUIDANCE OR RE-TESTS WILL BE AT THE COST OF THE CONTRACTOR
- THE PLACEMENT OF FILL TO BE EXECUTED SUCH THAT TO BE FREE DRAINING AT ALL TIMES AND NOT TO BE A NUISANCE OR PONDING TO ADJOINING PROPERTY OR ROADS.
- NO DEMOLITION MATERIAL TO BE USED AS FILL MATERIAL. WHERE UNSUITABLE MATERIAL IN AREAS OF FILL IS ENCOUNTERED, THIS WILL BE TREATED AS SET OUT IN THE EARTHWORK SPECIFICATION.
- ALL VEHICLES EXITING FROM THE SITE TO BE CLEAN TO PREVENT MATERIAL BEING TRACKED OR DEPOSITED ON THE ADJOINING PUBLIC ROADS, REFER ENVIRONMENTAL MANAGEMENT NOTES ON THE EROSION AND SEDIMENT
- SITE ACCESS TO AND ACROSS THE SITE ARE SUBJECT TO SUPERINTENDENT

TOPSOIL RESPREAD REQUIREMENTS

TOPSOIL RESPREAD THICKNESS SHALL BE AS SPECIFIED BELOW IN THE FOLLOWING AREAS:

REFER TO EROSION & SEDIMENT CONTROL - STABILISATION PHASE DRAWING FOR TOPSOIL RESPREAD LOCATIONS AND THICKNESS.

CONTRACTOR SHALL SUPPLY AND LAY TURF AS SPECIFIED IN THE FOLLOWING

REFER TO EROSION & SEDIMENT CONTROL - STABILISATION PHASE DRAWING FOR TURF SUPPLY AND LAY AREAS.

TRENCH SPOIL

EXCESS TRENCH SPOIL MATERIAL GENERATED BY THIS CONTRACT SHALL BE PLACED EITHER WITHIN THE FILL ZONE NOMINATED ON THE EARTHWORKS DRAWINGS OR WITHIN A FILL ZONE NOMINATED BY THE SUPERINTENDENT THAT SHALL BE CONFIRMED PRIOR TO CONSTRUCTION COMMENCEMENT. FILL TO BE PLACED UNDER LEVEL 1 SUPERVISION AND IN ACCORDANCE WITH THE EARTHWORKS SPECIFICATION.

TRENCH BACKFILL

CBR15 STORMWATER TRENCH BACKFILL MATERIAL SHALL BE SOURCED FROM ON SITE EXCAVATED MATERIAL

EXCAVATION IN ROCK

CONTRACT SHALL INCLUDE TREATING, SIZING, CONDITIONING AND PROCESSING ALL TYPES OF ROCK IN ALL EXCAVATIONS. PROCESSING TO BE COMPLETED TO ENSURE THAT FILL SPECIFICATION AND LEVEL ONE CERTIFICATION IS ACHIEVED.

EVERLEIGH EARTHWORKS TOLERANCE TABLE

ITEM	TOLERANCE
EARTHWORKS IN ALLOTMENTS AND VERGES ^(a)	EWL or FSL +/- 50mm
CUT BATTERS (OTHER THAN IN LOTS)	EWL or FSL +/- 150mm ^(b)
FILL BATTERS (OTHER THAN IN LOTS)	EWL or FSL +/- 300mm ^(b)
EARTHWORKS IN PARKS	EWL or FSL +/- 50mm

- TOLERANCE IS -0mm / +50mm WHERE ADJACENT DRAINAGE ELEMENT.
- (b) MEASURED FROM THE AVERAGE SLOPE PLANE.

- EARTHWORKS LEVEL (EWL) IS 100mm BELOW FINISHED SURFACE LEVEL (FSL) ON ALLOTMENTS (TOPSOIL RESPREAD THICKNESS).
- FINISHED SURFACE LEVEL (FSL) IS TOP OF TURF / STABILISED TOPSOIL
- ROADWORKS SUBGRADE, PAVEMENT, ASPHALT CONSTRUCTION LEVEL
- TOLERANCES AS PER LCC PSP No. 5. STORMWATER DRAINAGE CONSTRUCTION LEVEL TOLERANCES AS PER LCC
- SEWER AND WATER RETICULATION CONSTRUCTION LEVEL TOLERANCES AS PER SEQ D&C CODE.

DISPERSIVE SOILS MANAGEMENT NOTES

- GYPSUM TREATMENT FOR DISPERSIVE SOILS SHALL BE UNDERTAKEN IN ACCORDANCE WITH THE EVERLEIGH DISPERSIVE SOIL MANAGEMENT PLAN (REPORT #GE20.042.R1). AREAS THAT REQUIRED TREATMENT REGARDLESS OF NOMINATING ON PLANS ARE
 - ALL SERVICE TRENCHES BELOW AND ABOVE BEDDING MATERIAL INCLUDING STRUCTURES, E.G. MANHOLES.

 - UNDER AND SURROUNDING STORMWATER HEADWALLS
 TURF/LANDSCAPED AREAS SUBJECT TO DIRECTED WATER FLOWS. TREATMENT AT FINISHED EARTHWORKS PRIOR TO TOPSOIL
 - PLACEMENT/FINISH LANDSCAPE SURFACE. TURF/LANDSCAPED AREAS SUBJECT TO WATER PONDING. TREATMENT
- AT FINISHED EARTHWORKS PRIOR TO TOPSOIL PLACEMENT/FINISH TREATMENT TO INSITU/UNTOUCHED ROCK IS NOT REQUIRED.
- STABILISATION OF DISTURBED AREAS AND MANAGEMENT OF EROSION AND SEDIMENT SHALL BE UNDERTAKEN IN ACCORDANCE WITH THE EROSION AND SEDIMENT CONTROL PLANS IN THIS DRAWING SET. THE CONTRACTOR IS TO REVIEW THE PROPOSED DRAINS AND DETERMINE IF TREATMENT TO ANY DIVERSION DRAIN IS REQUIRED BASED ON TIME IN USE ON DURING WORKS. TREATMENT TO BE IN ACCORDANCE WITH THE DSMP.
- CONTRACTOR MUST CONSTRUCT AND ESTABLISH THE EROSION AND SEDIMENT CONTROL DEVICES, CONSTRUCTION WATER HOLDING DAM AND HES BASIN PRIOR TO COMMENCING EARTHWORKS OPERATION. TREATMENT TO THE SURFACE OF ANY WATER RETAINING BODY SHALL BE IN ACCORDANCE WITH THE DSMP $\,$
- ALL DISTURBED AREAS SHALL BE STABILISED AS SOON AS PRACTICABLE (BUT NOT MORE THAN 10 DAYS) FOLLOWING FINALISATION OF LEVELS. STABILISATION TO BE IN ACCORDANCE WITH EROSION & SEDIMENT CONTROL - STABILISATION PHASE.

TOPSOIL AMELIORATION

ONSITE STRIPPED TOPSOIL SHALL BE AMELIORATED PRIOR TO RESPREAD. THE FOLLOWING AMELIORATION SPECIFICATIONS SHALL APPLY:

A-GRADE QUALITY TOPSOIL AMELIORATION: - SCREEN STRIPPED TOPSOIL

- ON-SITE COMPOST INCORPORATION (0.15kg/m³ OF TOPSOIL)
- DOLOMITE (15kg/m³ OF TOPSOIL)
- GRANULAR WETTING AGENT (0.5kg/m³ OF TOPSOIL) - FERTILISER (0.4kg/m³ OF TOPSOIL)

B-GRADE QUALITY TOPSOIL AMELIORATION: - SCREEN STRIPPED TOPSOIL

- DOLOMITE (15kg/m³ OF TOPSOIL)

 GRANULAR WETTING AGENT (0.5kg/m³ OF TOPSOIL)
- FERTILISER (0.4kg/m³ OF TOPSOIL)

ROCK TREATMENT IN ALLOTMENTS

WHERE ALLOTMENTS ARE LOCATED IN CUT, THE CONTRACTOR SHALL OVER-EXCAVATE A MINIMUM 500mm DEPTH BELOW DESIGN EARTHWORKS LEVEL (EWL), AND RECOMPACT IN ACCORDANCE WITH THE EARTHWORKS SPECIFICATION

ALL CUT LOTS WHICH ARE NOT LOCATED IN ROCK MUST ACHIEVE 100kPa BEARING CAPACITY. WHERE THIS CAN'T BE ACHIEVED, THE CONTRACTOR SHALL RECTIFY THE SUBGRADE IN ACCORDANCE WITH THE EARTHWORKS SPECIFICATION TO ACHIEVE A 100kPa BEARING CAPACITY

ROCK TREATMENT IN VERGES

WHERE ROAD RESERVES ARE LOCATED IN CUIT. THE CONTRACTOR SHALL OVER-EXCAVATE A MINIMUM 1000mm DEPTH BELOW DESIGN EARTHWORKS LEVEL (EWL) AND RECOMPACT IN ACCORDANCE WITH THE EARTHWORKS SPECIFICATION

EARTHWORKS SPECIFICATION

SPECIFICATION	DEPTH RANGE (m)				PAVEMENT	TRENCH	
	0.0 - 0.6	0.6 - 3.00	3.00 - 5.00	> 5.00	SUBGRADE	BACKFILL	
CBR %	=	-	-	-	10	15	
LAYER THICKNESS (mm)	300	300	300	300	BETWEEN SUBGRADE AND 0.3m BELOW	300	
MAXIMUM PARTICLE SIZE (mm)	200	500	500	500	200	200	
% PASSING 37.5mm	80% MIN	REFER NOTES AND KEY OUTCOMES	REFER NOTES AND KEY OUTCOMES	REFER NOTES AND KEY OUTCOMES	REFER NOTES AND KEY OUTCOMES	REFER NOTES AND KEY OUTCOMES	
% PASSING 0.075mm	30% MIN	REFER NOTES	REFER NOTES	REFER NOTES	REFER NOTES	REFER NOTES AND AS3798	
COMPACTION	95% STD	95% STD	95% STD	95% STD	100% STD	95% MOD IN ROADS AND 95% STD OUTSIDE ROADS	
MOISTURE	+/- 2% OMC	+/- 2% OMC	+/- 2% OMC	+/- 2% OMC	60% - 90% OF OMC	+/- 2% OMC	

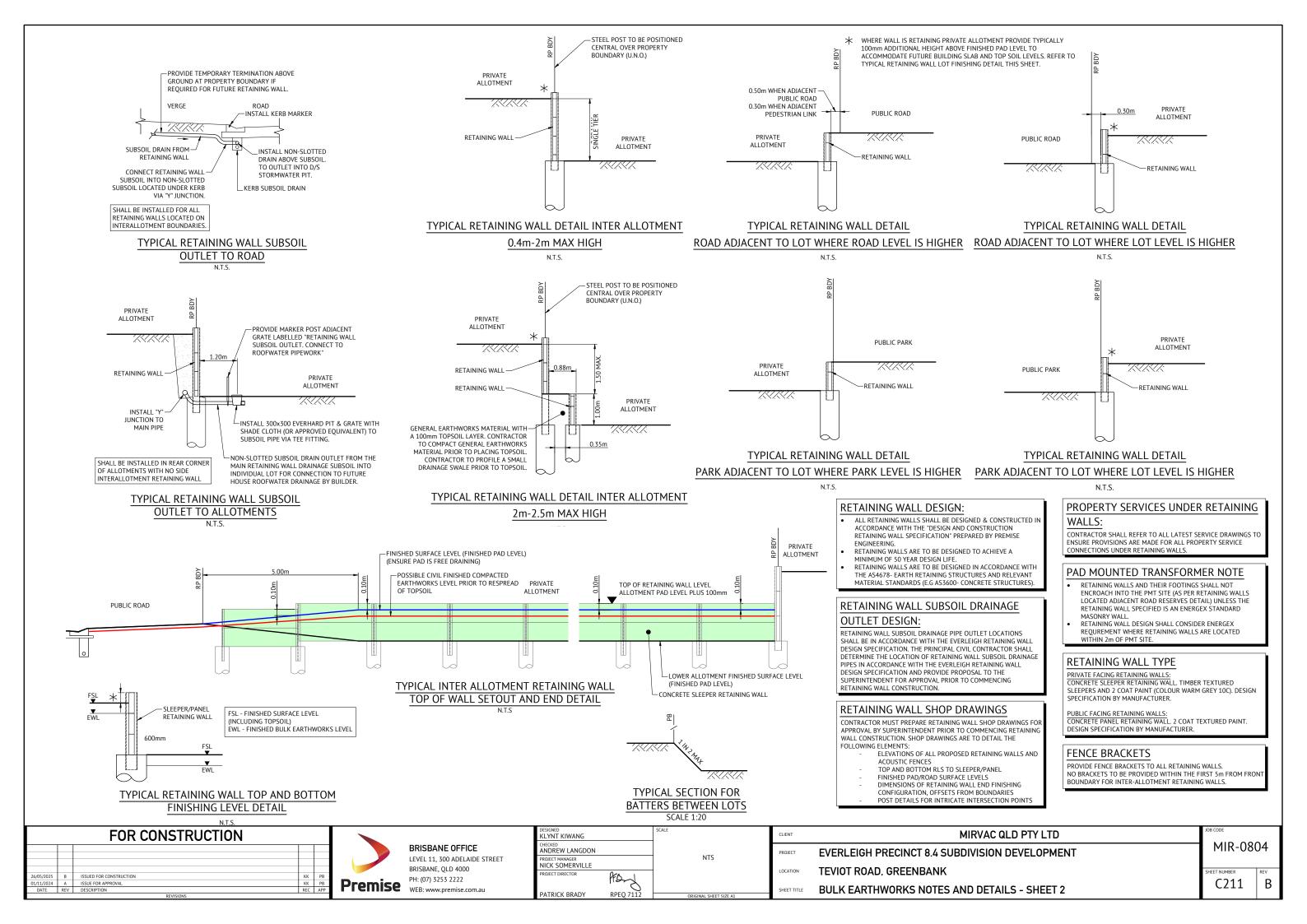
- 1. OMC OPTIMUM MOISTURE CONTENT
- 2. LAYER OF THICKNESS IS LIMITED TO 300mm TO ALLOW IDENTIFICATION OF LARGER PARTICLES AND ALLOW EVERY CHANCE OF BREAK DOWN IN FILLING OR REMOVAL
- 3. TREATMENT OF ROCK TO SIZES ABOVE SHOULD BE CARRIED OUT IN CUT PRIOR TO LOADING TO FILL AREAS. TREATED ROCK TO BE APPROVED BY GITA PRIOR TO TRANSPORTING.
 4. UPPER 0.6m, (PARTICULARLY IN AREAS OF DEEP FILL), OF THE FILL PROFILE TO BE RELATIVELY IMPERMEABLE HENCE INCREASE IN FINES COMPONENT.
- 5.PROOF ROLL TESTING ON EACH COMPACTED LAYER USING RUBBER WHEELED PLANT SUCH AS LOADED ADT'S OR LOADED SCRAPERS, UNFAVOURABLE DEFORMATION OF THE COMPACTED SURFACE UNDER LOAD OF ADT'S OR SCRAPERS WILL REQUIRE REPAIR PRIOR TO ADDITIONAL PLACEMENT.
- 6. MECHANICAL INTERLOCK METHODOLOGY IS NOT APPROPRIATE DUE TO POOR DURABILITY OF SITE WON SANDSTONE. FILL COMPOSITION IS REQUIRED TO INCLUDE AN APPROPRIATE SAND GRAVEL AND FINES COMPONENT CONFORMING TO THE REQUIREMENTS OF AS798.

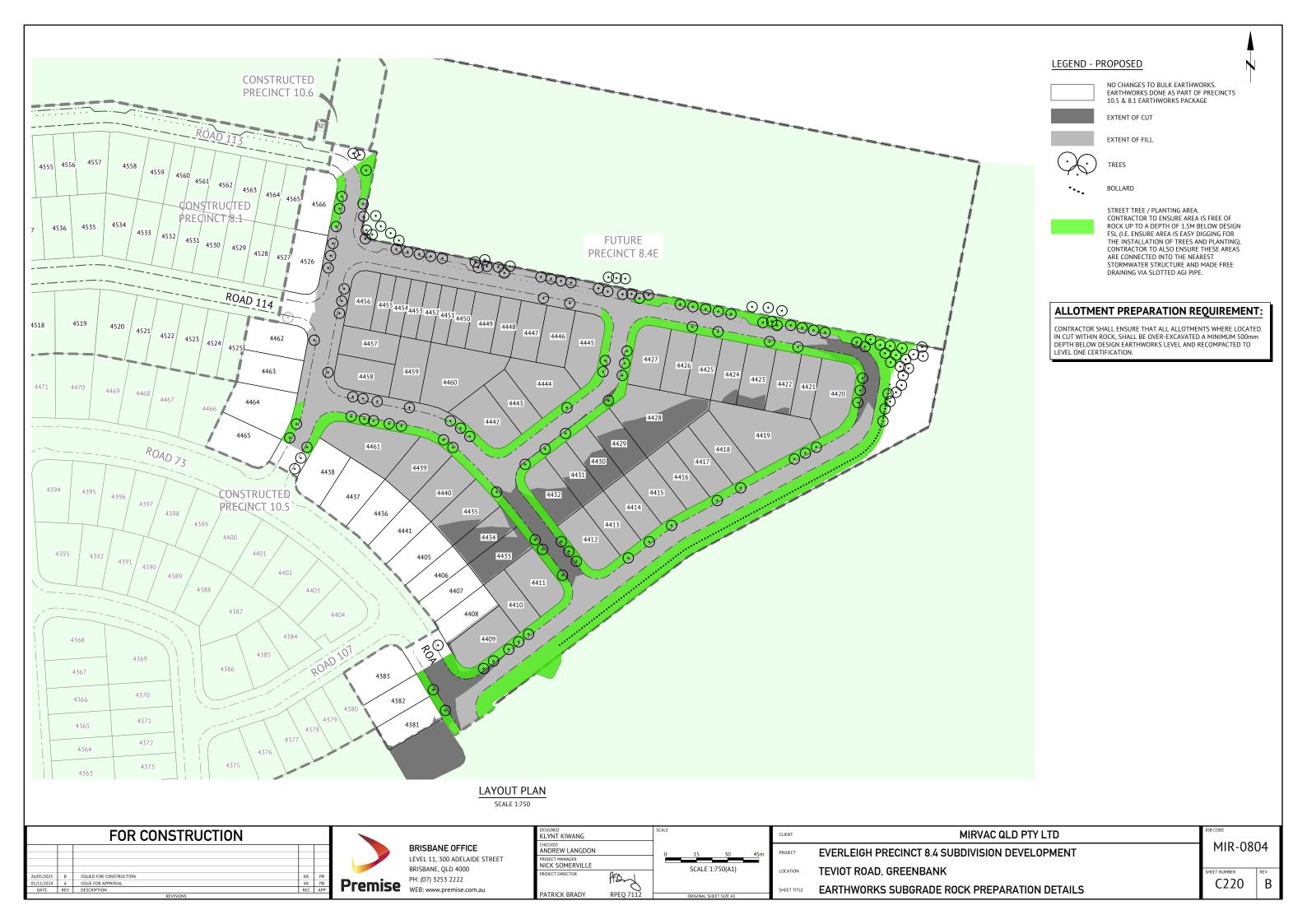
EY OUTCOMES FOR EARTHWORKS OPERATIONS

- 1. DELIVER RESIDENTIAL LOTS WITH FAVOURABLE LOT CLASSIFICATIONS I.E NO P CLASSIFICATIONS 2. FILL THICKNESS DOES NOT VARY MORE THAN 2m OVER A DISTANCE OF 10m
- 3. CONSTRUCT FILL AND LIMIT LONG TERM CREEP SETTLEMENTS TO WITHIN 0.5% TO 1.0% OF THE FILL THICKNESS
 4. BUILDING PLATFORM THAT ALLOWS BUILDERS TO CONSTRUCT SLAB ON GROUND RAFTS USING LIGHT EARTHMOVING EQUIPMENT
- 5. MATERIAL WON FROM CUTS AND USED IN FILL WITH REQUIRE
- CUTS IN ROCK AS WELL AS BLENDED WITH
- CUTS IN FINER MATERIALS SUCH AS SANDS AND CLAYS
 CREATING A FILL PLATFORM THAT IS ABLE TO BE TESTED IN ACCORDANCE WITH AS3798 AND AS1289

FOR CONSTRUCTION				
26/05/2025	В	ISSUED FOR CONSTRUCTION	KK	PB
01/11/2024	Α	ISSUE FOR APPROVAL	KK	PB
DATE	REV	DESCRIPTION	REC	APP
		REVISIONS		

BRISBANE OFFICE

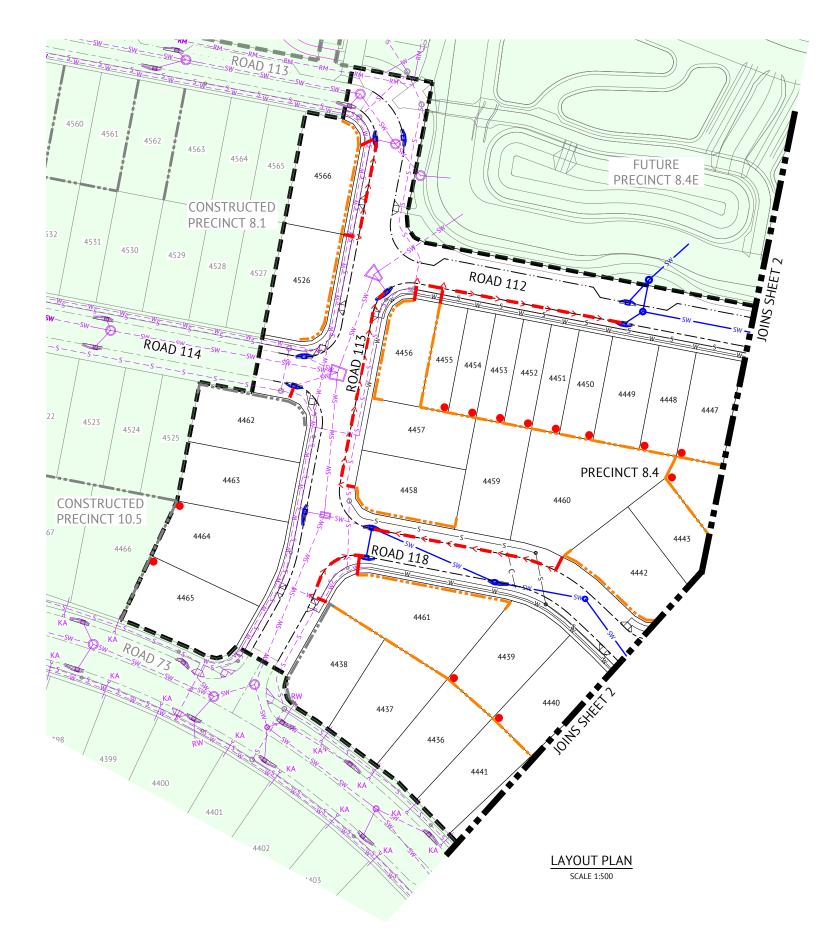

LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 PH: (07) 3253 2222

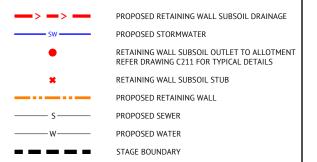

ESIGNED LYNT KIWANG		SC
HECKED NDREW LANGDON		
ROJECT MANAGER		
ROJECT DIRECTOR	PFD	
ATRICK BRADY	RPEQ 7112	

SCALE	
	ORIGINAL SHEET SIZE A1

MIRVAC QLD PTY LTD **EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT** TEVIOT ROAD, GREENBANK **BULK EARTHWORKS NOTES AND DETAILS - SHEET 1**

MIR-0804

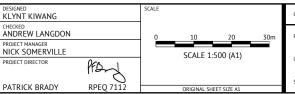




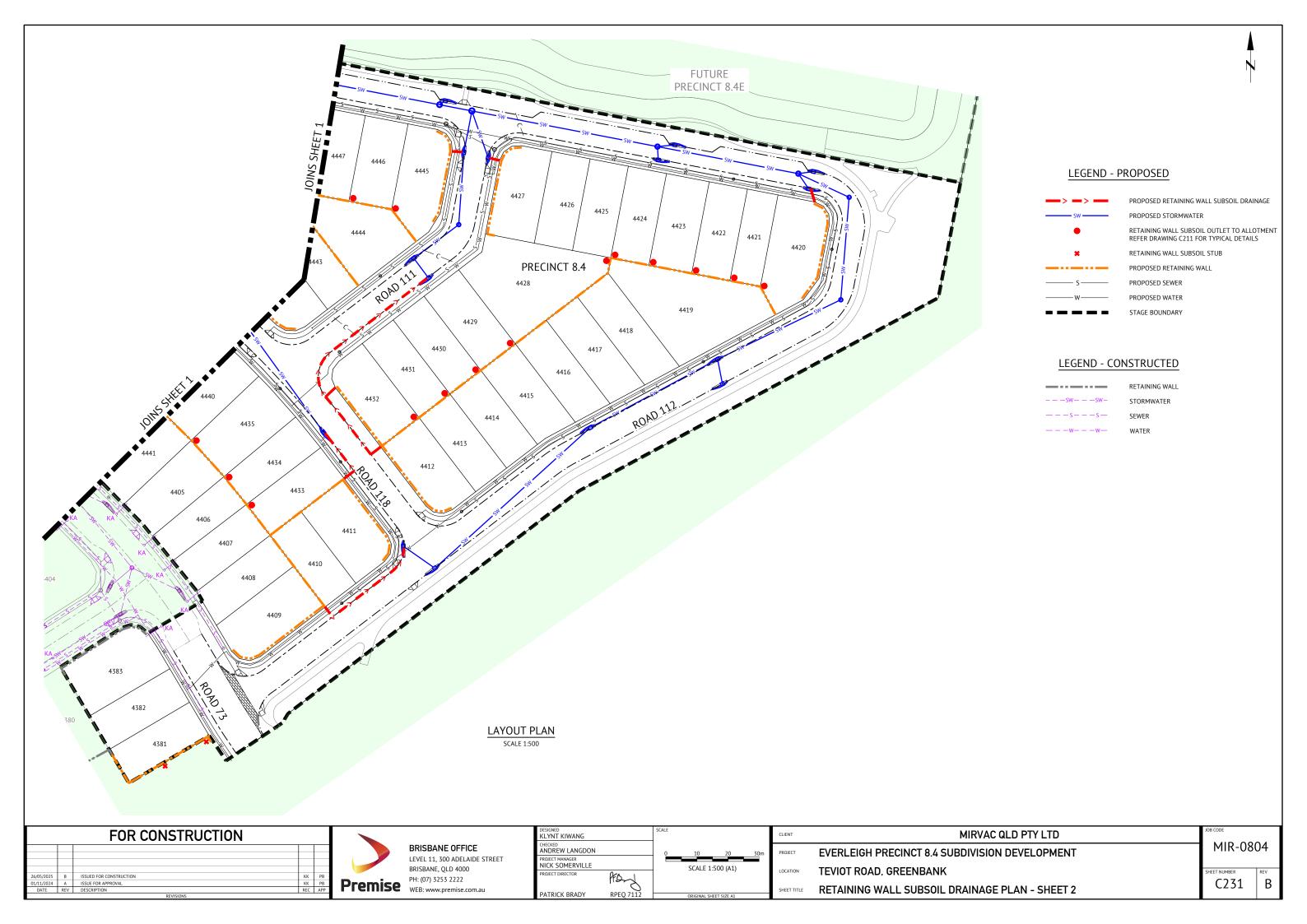
MIR-0804

C230

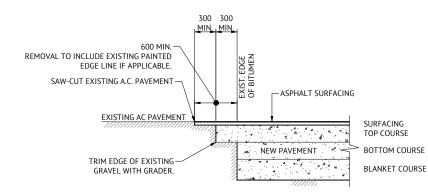
LEGEND - PROPOSED

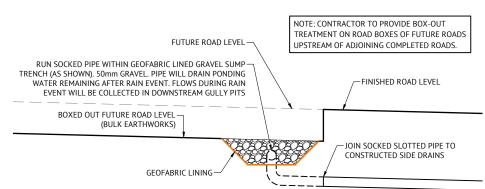


LEGEND - CONSTRUCTED

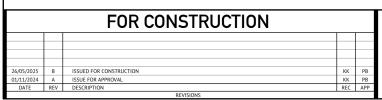

RETAINING WALL STORMWATER SEWER WATER SEWER RISING

FOR CONSTRUCTION					
26/05/2025	В	ISSUED FOR CONSTRUCTION	KK	PB	
01/11/2024	Α	ISSUE FOR APPROVAL	KK	PB	
DATE	REV	DESCRIPTION	REC	APP	


CLIENT	MIRVAC QLD PTY LTD	JOB CODE
PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT	MIR-
LOCATION	TEVIOT ROAD, GREENBANK	SHEET NUMBER
SHEET TITLE	RETAINING WALL SUBSOIL DRAINAGE PLAN - SHEET 1	C230

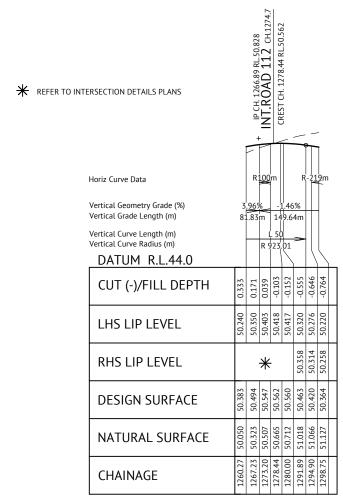

- 1. ALL WORK IS TO BE CARRIED OUT IN ACCORDANCE WITH LOGAN CITY COUNCIL STANDARD DRAWINGS AND METHODS (U.N.O.).
- NOTWITHSTANDING THE LIMITS OF CUTTING AND FILLING SHOWN ON THE DRAWINGS, THE ACTUAL LIMITS SHALL BE DETERMINED ON SITE BY THE SUPERINTENDENT DURING CONSTRUCTION AND SIMILARLY THE FINISHED SURFACE CONTOURS MAY BE ADJUSTED BY WRITTEN DIRECTION OF THE SUPERINTENDENT DURING CONSTRUCTION.
- THE CONTRACTOR IS TO ASCERTAIN THE EXACT LOCATION OF ALL EXISTING SERVICES PRIOR TO COMMENCEMENT OF CONSTRUCTION AND SHALL BE RESPONSIBLE FOR THE COST OF RECTIFICATION OF ANY DAMAGES TO EXISTING SERVICES WHICH MAY OCCUR. THE LOCATION OF EXISTING SERVICES SHOWN ON THESE DRAWINGS ARE APPROXIMATE ONLY.
 SUBGRADE TEST RESULTS TO BE FORWARDED TO SUPERINTENDENT FOR DETERMINATION OF BOX
- DEPTHS PRIOR TO EXCAVATION. TESTS SHALL INCLUDE SOAKED CBR AND/OR OTHER TESTS AS REQUESTED BY THE SUPERINTENDENT.
- ALLOTMENT FILLING TO BE COMPACTED TO 95% (min) OF THE R.D.D. (AS 1289 TESTS E1.1, E4.1). LEVELS AND SETOUT INFORMATION FOR KERB AND CHANNEL CONSTRUCTION IS GIVEN TO LIP OF KERB.
- LEVELS AND GRADIENTS AT JUNCTIONS WITH EXISTING WORKS MAY BE VARIED AS APPROVED BY THE SUPERINTENDENT TO ACHIEVE SATISFACTORY CONNECTION TO THE EXISTING WORKS.
- SIDE DRAINS AND MITRE DRAINS TO BE CONSTRUCTED ADJACENT TO ALL KERB AND CHANNEL PROVIDE FLUSH POINTS TO SUBSOIL DRAINS LOCATIONS TO BE CONFIRMED ON SITE
- ALL STORMWATER PIPES SHALL BE CLASS '2' (UNO) R.C. PIPES UNLESS AN ALTERNATIVE IS APPROVED BY THE SUPERINTENDENT PRIOR TO CONSTRUCTION. ALL PIPES ARE 375mm DIAMETER U.N.O.
- GULLIES AND GULLY GRATES SHALL BE TO STD. DRGs BSD-8051 BSD-8059.
- 12. KACEY GALV. STEEL KERB ADAPTORS ARE TO BE INSTALLED TO THE REQUIREMENTS OF THE LOCAL COUNCILS STANDARD DRAWINGS AND SPECIFICATIONS.
- ALL LOTS SHOWN BOXED TO HAVE ROOFWATER FOOTPATH CROSSINGS TO KERB. CROSSINGS ARE TO BE 88.9 DIA. GALV. CHS.TO KACEY KERB ADAPTOR.
- ALL TEMPORARY ROOFWATER OUTLETS TO BE EXCAVATED AT 1 IN 200 TO NATURAL SURFACE.
 ROOFWATER PITS ARE TO BE 600mm DIAMETER FOR DEPTHS LESS THAN 750mm, 900mm DIAMETER FOR DEPTHS BETWEEN 750mm AND 1500mm DEEP AND 1050mm DIAMETER FOR DEPTHS GREATER THAN 1500mm.
- ALL ROOFWATER PIPES CROSSING CONCRETE FOOTPATHS ARE TO BE INSTALLED PRIOR TO CONSTRUCTION OF CONCRETE FOOTPATHS.
- HAZARD MARKERS (D4-4A) TO BE PLACED AT THE END OF NEW WORKS AS DIRECTED BY SUPERINTENDENT.
- 18. SITE CBR VALUE AND PAVEMENT DESIGN AND DEPTHS TO BE VERIFIED WITH CBR TESTS PRIOR TO
- 19. LOCATION & LEVELS OF ALL EXISTING SERVICES TO BE CONFIRMED ON SITE BY CONTRACTOR PRIOR TO THE COMMENCEMENT OF CONSTRUCTION.
- 20. TO BE READ IN CONJUNCTION WITH ALL STORMWATER DRAINAGE LAYOUT PLANS & ROADWORKS

ROADWORKS NOTES

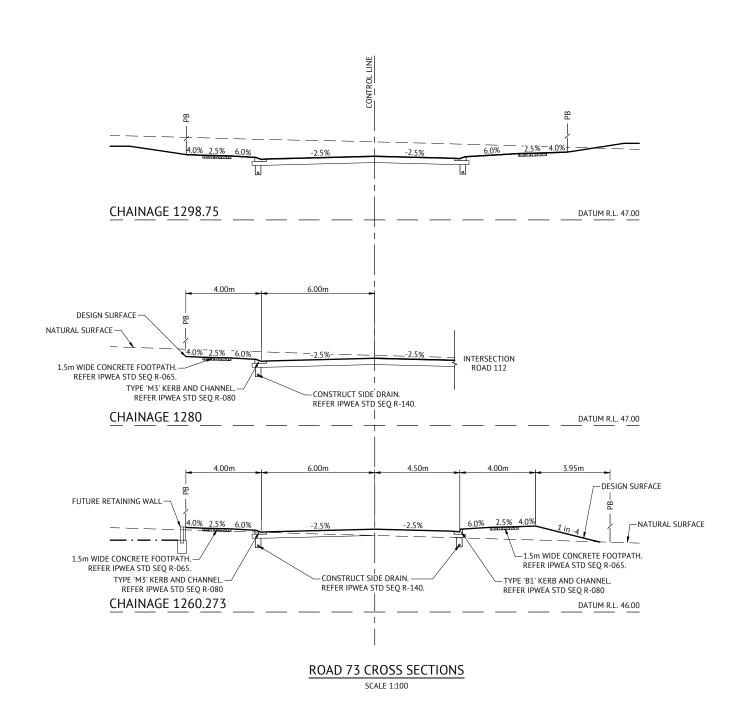

- GEOTECHNICAL TESTING FOR PAYEMENT CONSTRUCTION IS TO BE CARRIED OUT IN ACCORDANCE WITH THE PROJECT SPECIFICATION. TEST CERTIFICATES ARE TO BE PREPARED BY A REGISTERED N.A.T.A. LABORATORY AT THE CONTRACTORS COST AND SHALL BE PROVIDED TO THE ENGINEER PROGRESSIVELY THROUGH THE WORKS. THE CONTRACTOR IS TO NOTIFY THE ENGINEER OF ANY NON-CONFORMANCES.
- ALL NON CONFORMING WORK IS TO BE RECTIFIED AS DIRECTED BY THE ENGINEER.
 FULL DEPTH PAVEMENT CONSTRUCTION SHALL EXTEND BEHIND ALL KERB AND KERB AND CHANNEL FOR A DISTANCE WHICH IS THE GREATER OF 150mm FROM THE BACK OF KERB OR ACROSS TO THE OUTER LIMIT OF SIDE DRAIN FILTER MATERIAL.
- TRANSITION KERB AND CHANNEL TO BARRIER KERB SMOOTHLY OVER MIN. 1.0m LENGTH.
 PAVEMENT THICKNESSES NOMINATED ON THESE DRAWINGS ARE PROVISIONAL ONLY AND MAY BE
- VARIED BY THE SUPERINTENDENT SUBJECT TO INSITU PAVEMENT SUBGRADE TESTING, PAVEMENT SUBGRADES ARE TO BE INITIALLY CONSTRUCTED TO THE UNDERSIDE OF THE NOMINATED LOWER SUBBASE COURSE WITHIN FILL AREAS, AND TO THE UNDERSIDE OF THE NOMINATED UPPER SUBBASE COURSE WITHIN CUT AREAS, INSITU SUBGRADE CBR TESTING AS SPECIFIED FOR PAVEMENT DESIGN VERIFICATION IS TO BE CARRIED OUT AT THESE LEVELS.
- REPAIR ANY DAMAGE TO EXISTING KERB AND CHANNEL, FOOTPATH OR ROADWAY (INCLUDING REMOVAL OF CONCRETE SLURRY FROM FOOTPATHS, ROADS, KERB AND CHANNEL AND STORMWATER GULLIES AND SIDEDRAINS) THAT MAY OCCUR DURING ANY WORKS CARRIED OUT.

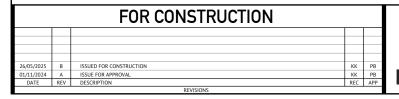
TYPICAL PAVEMENT CUT-BACK DETAIL

TYPICAL FUTURE ROADS BOX-OUT TREATMENT

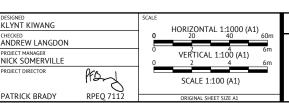

BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 PH: (07) 3253 2222

DESIGNED KLYNT KIWANG		SCALE				
CHECKED ANDREW LANGDON		0	0.4	0.8	1.2m	l
PROJECT MANAGER NICK SOMERVILLE				:20 (A1)		
PROJECT DIRECTOR	PRON		JCALE I			
PATRICK BRADY	RPEO 7112		ORIGINAL SE	HEET SIZE A1		ı

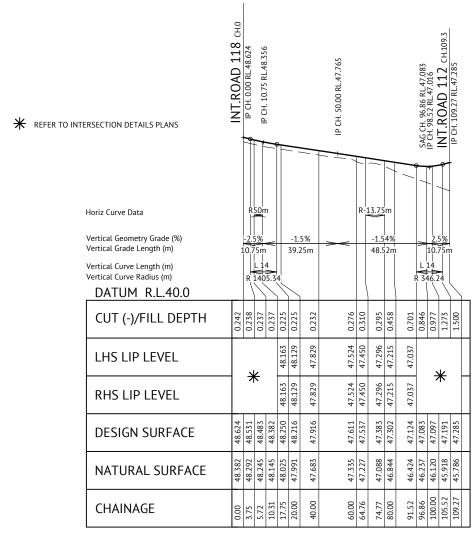

CLIENT	MIRVAC QLD PTY LTD
PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT
LOCATION	TEVIOT ROAD, GREENBANK
SHEET TITLE	ROADWORKS NOTES AND DETAILS


MIR-0804 C300

PAVEMENT DESIGN							
(PRELIMINARY)							
ROADS	-	ROAD 73					
CLASS	-	NEIGHBOURHOOD CONNECTOR 2					
ESA's	-	6.40 x 10 ⁶					
SURFACE	-	50mm AC of 14mm MIX					
PRIMER TYPE	-	PRIMER SEAL					
CBR 80	-	300mm					
CBR 45	-	100mm					
TOTAL BOX	-	450mm					



ROAD 73 LONGITUDINAL SECTION



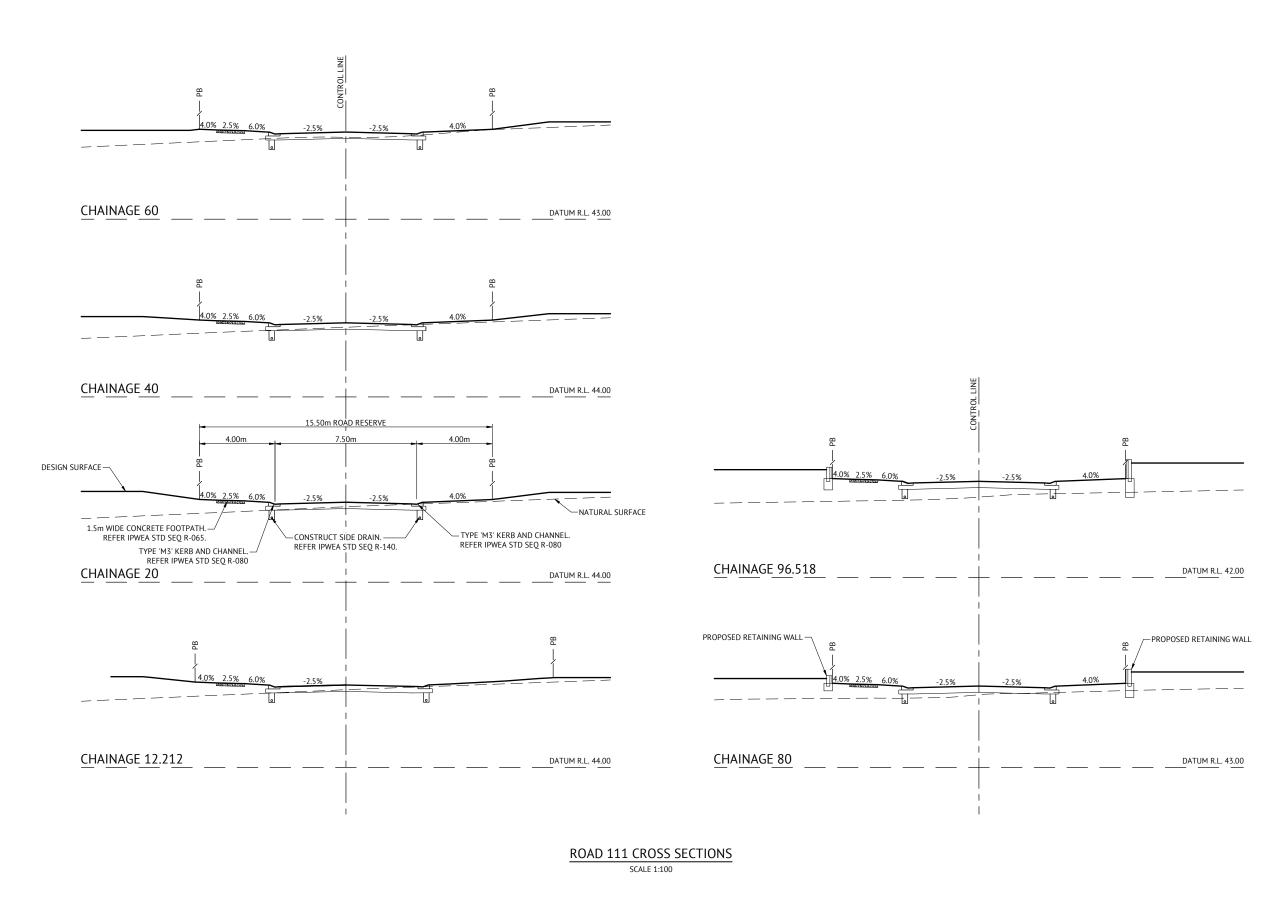
	CLIENT	MIRVAC QLD PTY LTD	JOB CODE MIR-080				
n I	PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT					
1	LOCATION	TEVIOT ROAD, GREENBANK	SHEET NUMBER	REV			
	SHEET TITLE	ROAD 73 LONG AND CROSS SECTIONS	C310	В			

PAVEMENT DESIGN (PRELIMINARY)					
ROADS	-	ROAD 111			
CLASS	-	ACCESS STREET (TYPICAL)			
ESA's	-	5.90 x 10 ⁵			
SURFACE	-	35mm AC of 10mm MIX			
PRIMER TYPE	-	PRIME			
CBR 80	-	150mm			
CBR 45	-	150mm			
TOTAL BOX	-	335mm			

ROAD 111 LONGITUDINAL SECTION

SCALE 1:1000(H) 1:100(V)

FOR CONSTRUCTION							
26/05/2025	В	ISSUED FOR CONSTRUCTION	KK	PB			
01/11/2024	Α	ISSUE FOR APPROVAL	KK	PB			
DATE	REV	DESCRIPTION	REC	APP			
	DEMICIONIC						

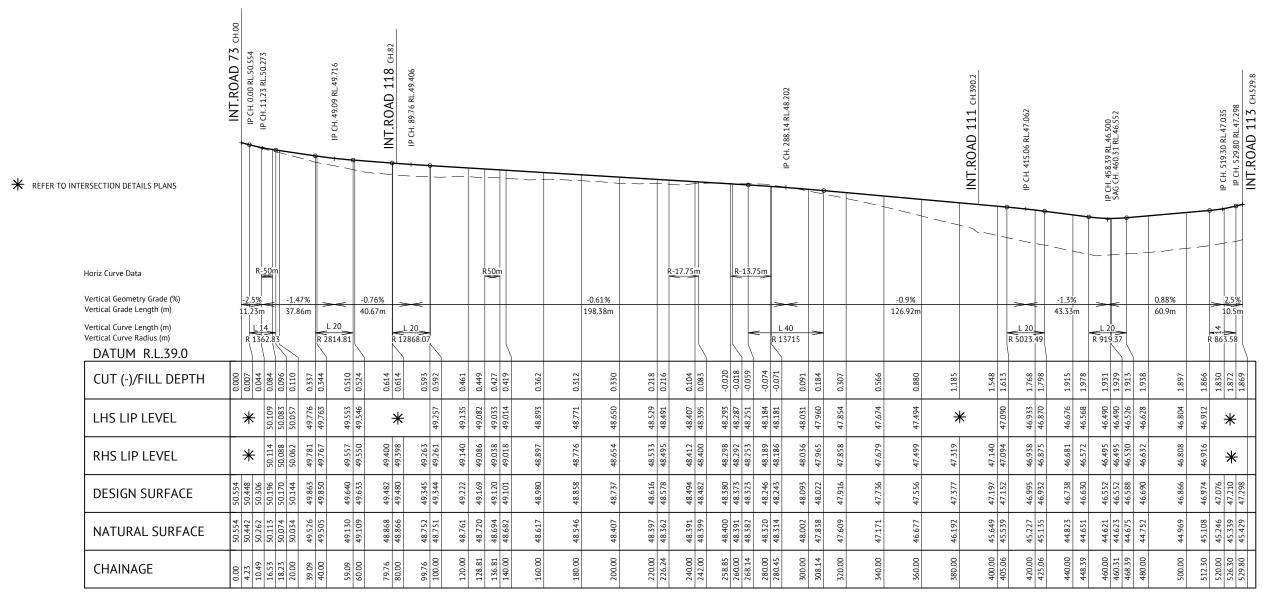


	DESIGNED KLYNT KIWANG		SCALE		CLIE
	CHECKED ANDREW LANGDON		0	HORIZONTAL 1:1000 (A1)	PRO
	PROJECT MANAGER NICK SOMERVILLE		0	VERTICAL 1:100 (A1) 6m	
	PROJECT DIRECTOR	PFD		TERTIONE 1.100 (A1)	LOC
	DATRICK DRADY	0			SHE
1	PATRICK BRADY	RPEQ 7112		ORIGINAL SHEET SIZE A1	

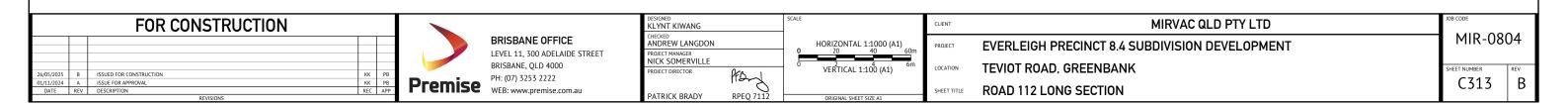
CLIENT	MIRVAC QLD PTY LTD
PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT
LOCATION	TEVIOT ROAD, GREENBANK
SHEET TITLE	ROAD 111 LONG AND SECTION

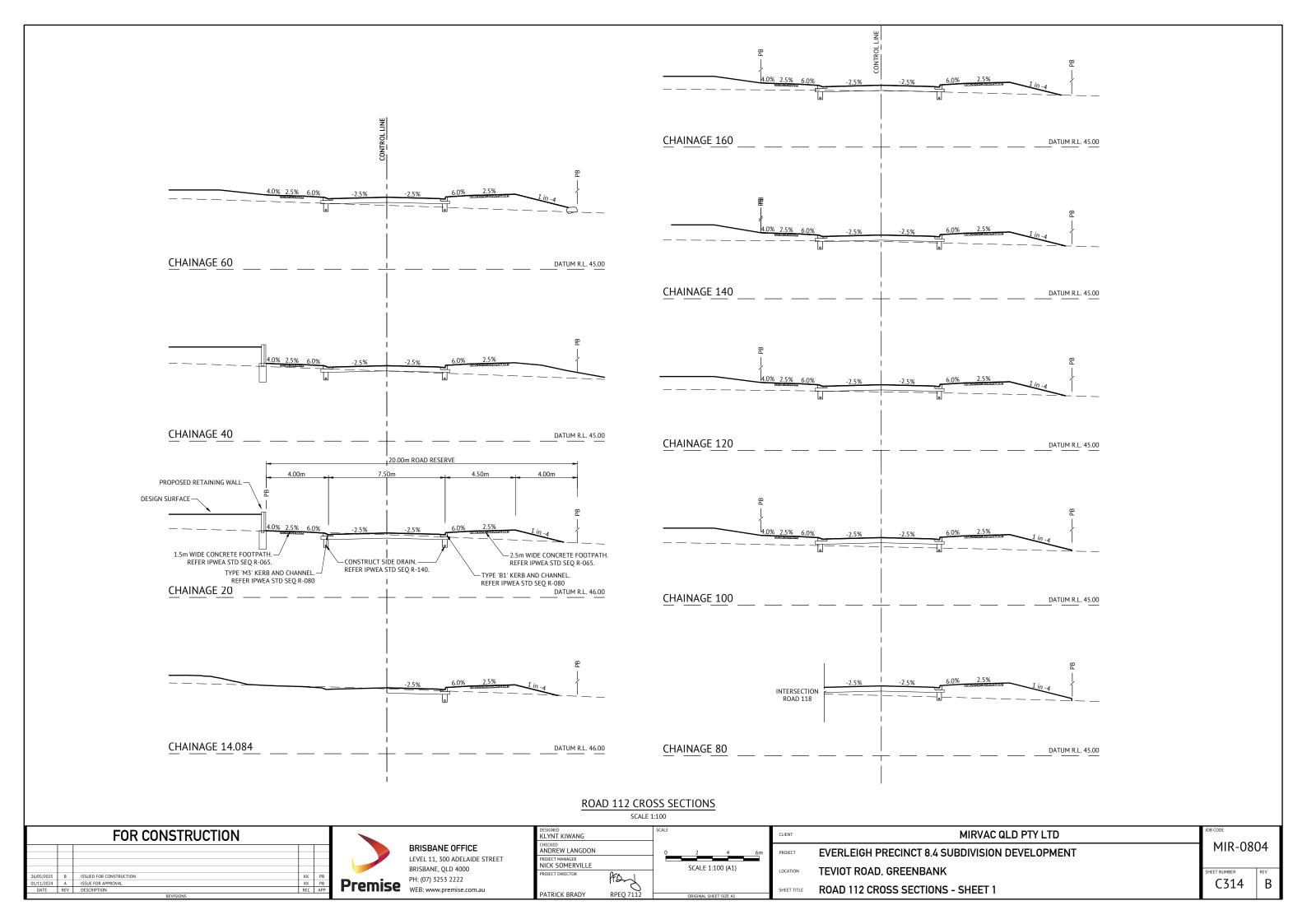
MIR-0804

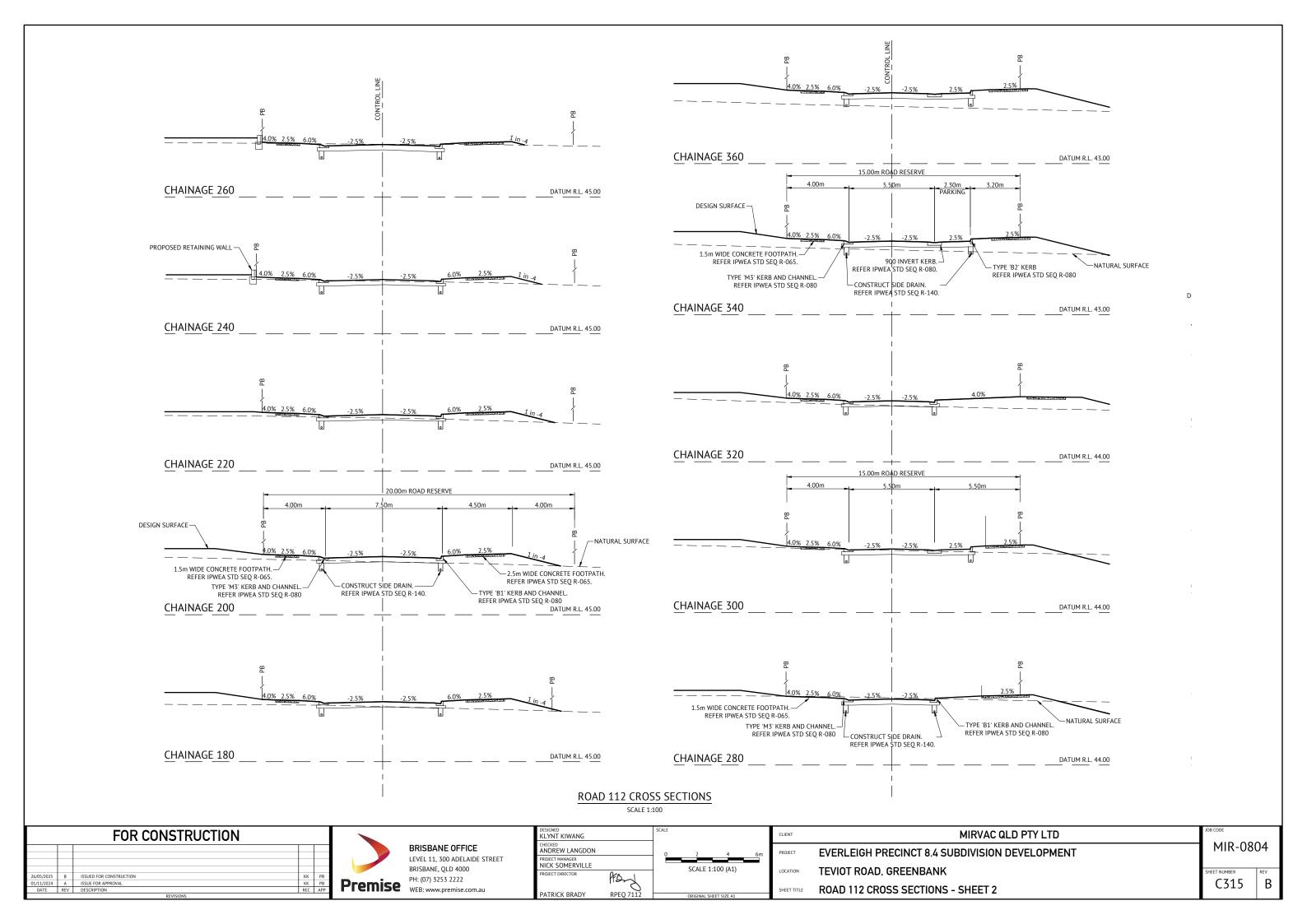
В

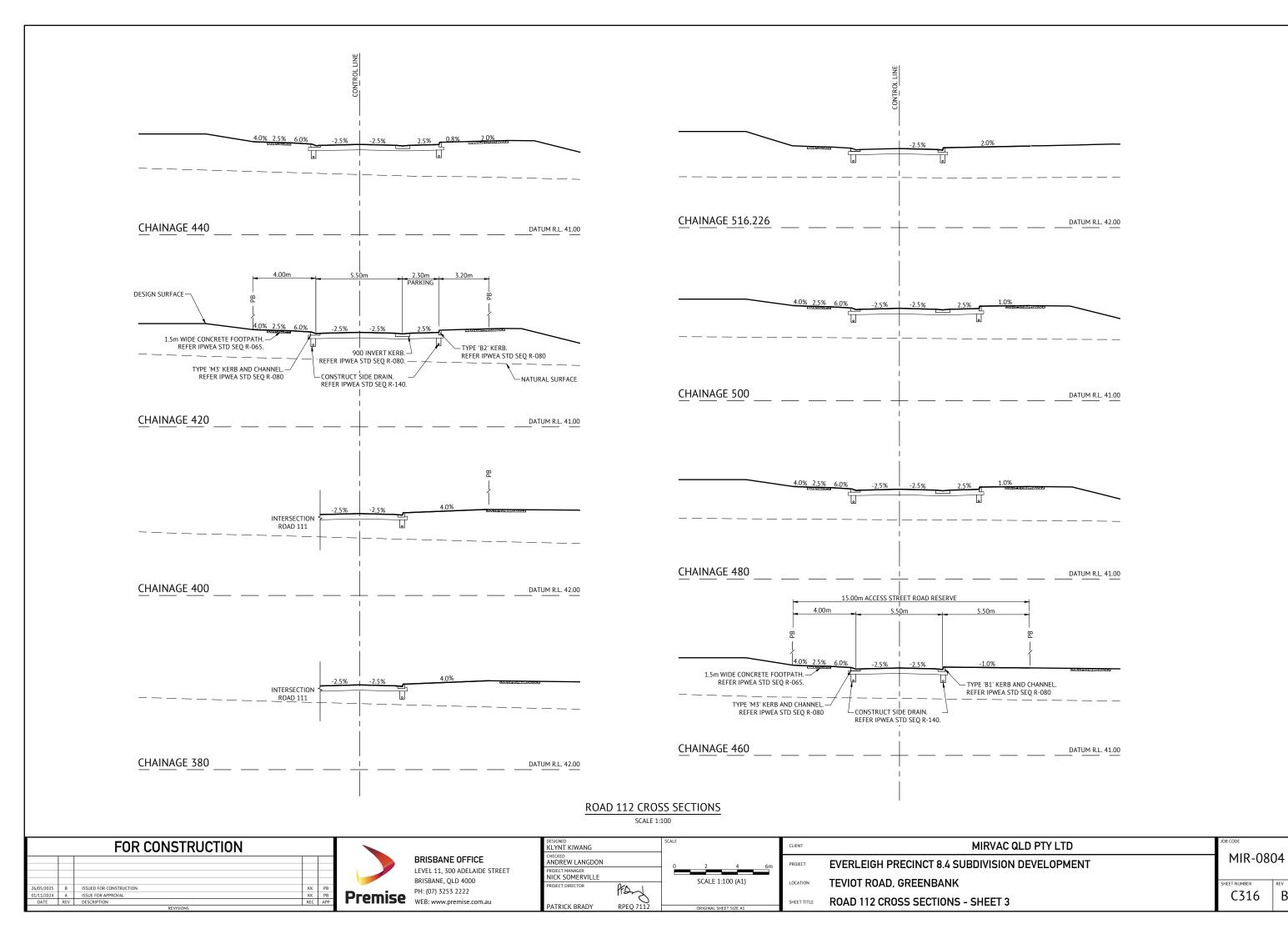


	FOR CONSTRUCTION		DESIGNED KLYNT KIWANG	SCALE	CLIENT	MIRVAC QLD PTY LTD	JOB CODE
		BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	ANDREW LANGDON PROJECT MANAGER	0 2 4 6m	PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT	MIR-0804
26/05/2025	ISSUED FOR CONSTRUCTION KK PB	BRISBANE, QLD 4000 PH: (07) 3253 2222	NICK SOMERVILLE PROJECT DIRECTOR	SCALE 1:100 (A1)	LOCATION	TEVIOT ROAD, GREENBANK	SHEET NUMBER REV
01/11/2024 // DATE RI	ISSUE FOR APPROVAL	Premise WEB: www.premise.com.au	PATRICK BRADY RPEQ 7112	ORIGINAL SHEET SIZE A1	SHEET TITLE	ROAD 111 CROSS SECTIONS	C312 B

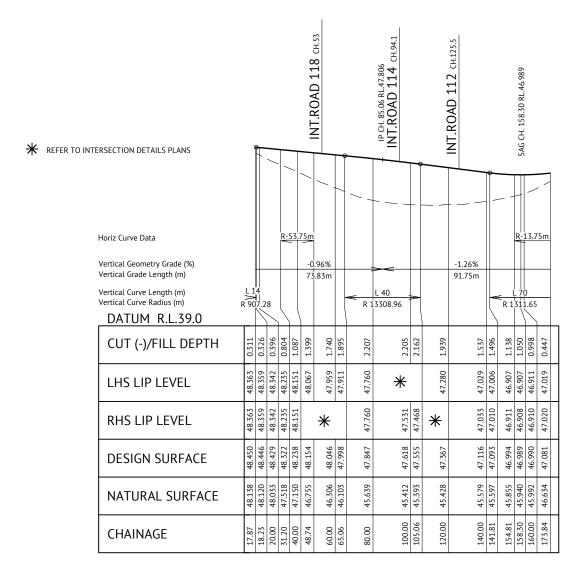

PAVEMENT DESIGN (PRELIMINARY)							
ROADS	-	ROAD 112 (CH.0.00-CH.4.23)					
CLASS	-	NEIGHBOURHOOD CONNECTOR 2					
ESA's	-	6.40 x 10 ⁶					
SURFACE	-	50mm AC of 14mm MIX					
PRIMER TYPE	-	PRIMER SEAL					
CBR 80	-	300mm					
CBR 45	-	100mm					
TOTAL BOX	_	450mm					

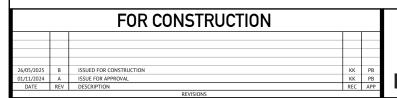

PAVEMENT DESIGN						
(PRELIMINARY)						
ROADS	-	ROAD 112 (CH.4.23-CH.529.80)				
CLASS	-	ACCESS STREET (PARK)				
ESA's	-	5.90 x 10 ⁵				
SURFACE	-	35mm AC of 10mm MIX				
PRIMER TYPE	-	PRIME				
CBR 80	-	150mm				
CBR 45	-	150mm				
TOTAL BOX	-	335mm				

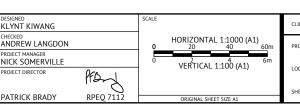

CONTRACTOR SHALL GUARANTEE CBR10 SUBGRADE OR GREATER. CBR TESTING SHALL BE CARRIED OUT BY CONTRACTOR IN ACCORDANCE WITH LOGAN CITY COUNCIL REQUIREMENTS AND RESULTS SHALL BE PRESENTED TO SUPERINTENDENT FOR APPROVAL PRIOR TO COMMENCEMENT OF PAVEMENT



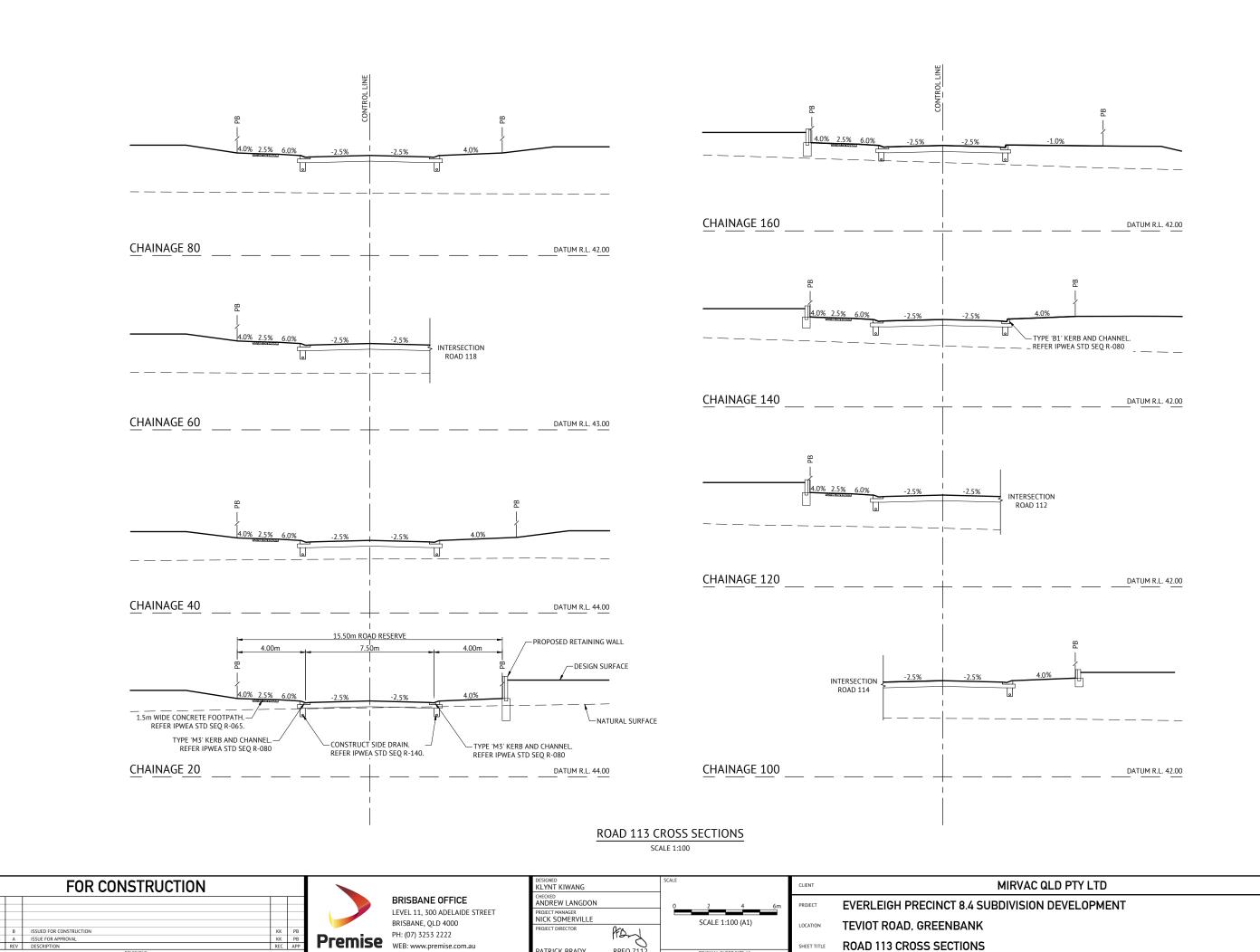
ROAD 112 LONGITUDINAL SECTION SCALE 1:1000(H) 1:100(V)






PAVEMENT DESIGN (PRELIMINARY)					
ROADS	-	ROAD 113			
CLASS	-	ACCESS STREET (TYPICAL/PARK)			
ESA's	-	5.90 x 10 ⁵			
SURFACE	-	35mm AC of 10mm MIX			
PRIMER TYPE	-	PRIME			
CBR 80	-	150mm			
CBR 45	-	150mm			
TOTAL BOX	-	335mm			

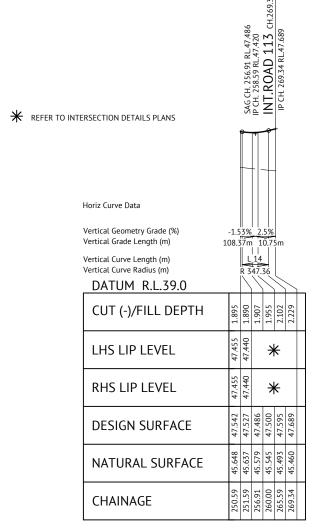
ROAD 113 LONGITUDINAL SECTION

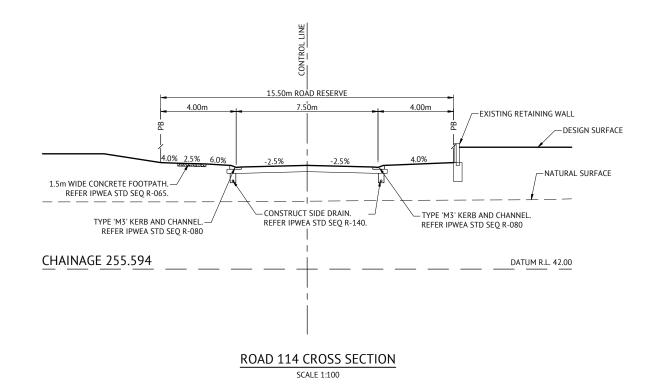


CLIENT	MIRVAC QLD PTY LTD
PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT
LOCATION	TEVIOT ROAD, GREENBANK
SHEET TITLE	ROAD 113 LONG SECTION

MIR-0804

C317

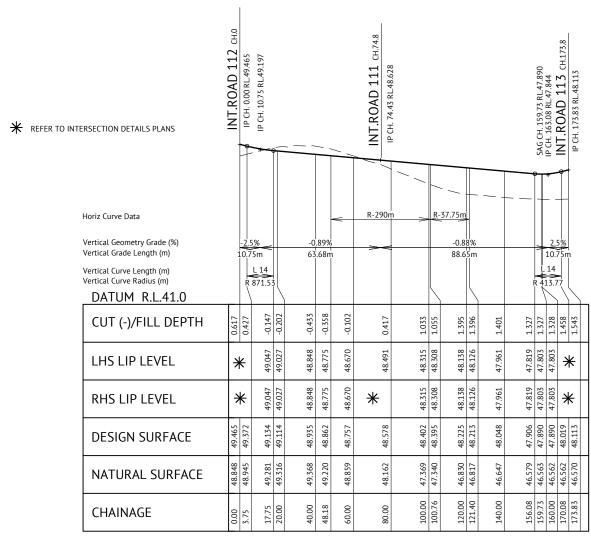

В


PATRICK BRADY

MIR-0804

PAVEMENT DESIGN (PRELIMINARY)			
ROADS	-	ROAD 114	
CLASS	-	ACCESS STREET (TYPICAL)	
ESA's	-	5.90 x 10 ⁵	
SURFACE	-	35mm AC of 10mm MIX	
PRIMER TYPE	-	PRIME	
CBR 80	-	150mm	
CBR 45	CBR 45 - 150mm		
TOTAL BOX	-	335mm	

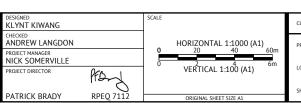
ROAD 114 LONGITUDINAL SECTION SCALE 1:1000(H) 1:100(V)


	FOR CONSTRUCTION				
26/05/2025	В	ISSUED FOR CONSTRUCTION	KK	PB	
01/11/2024	Α	ISSUE FOR APPROVAL	KK	PB	
DATE	REV	DESCRIPTION	REC	APP	

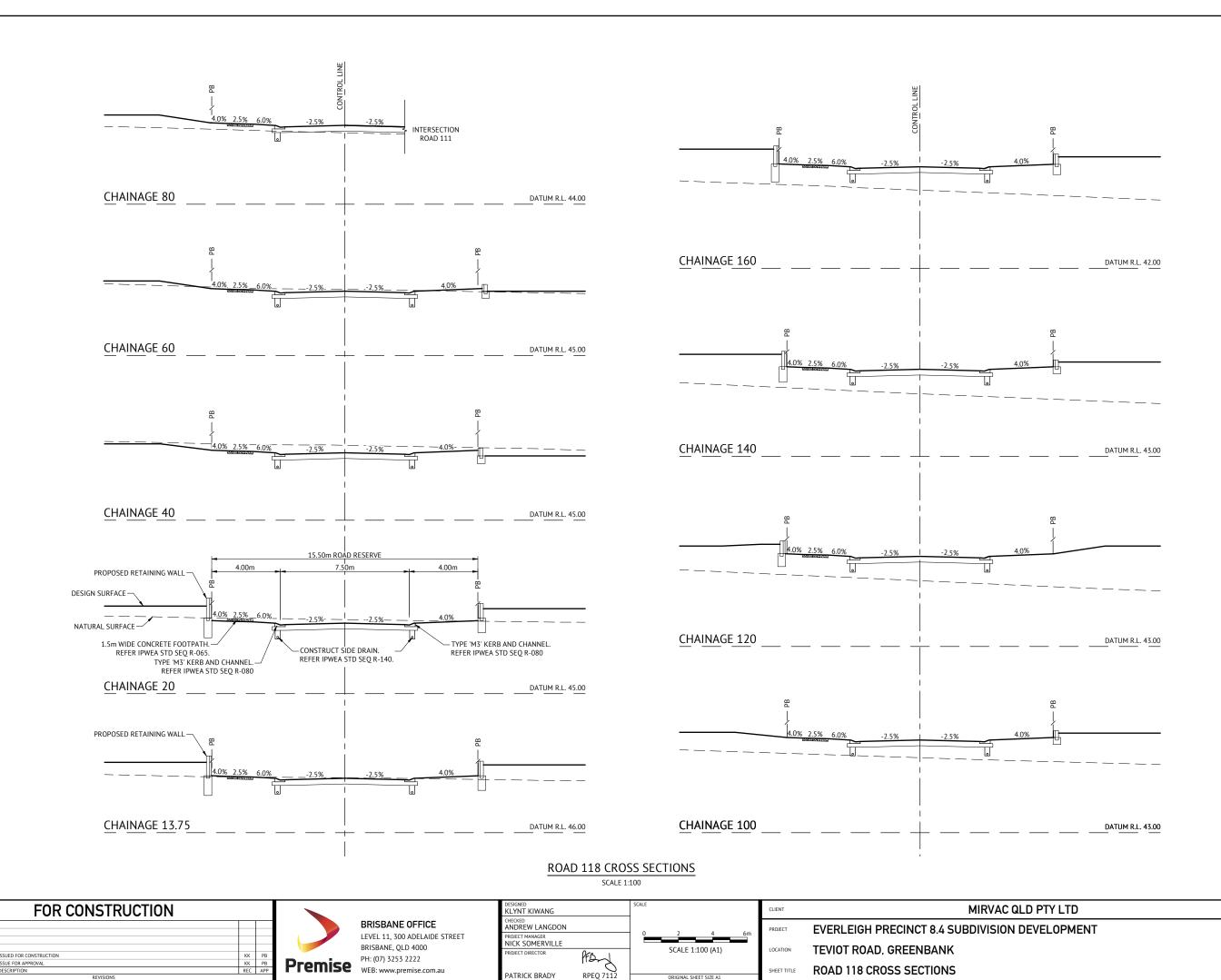
DESIGNED KLYNT KIWANG		SCALE				Г
CHECKED ANDREW LANGDON		0	HORIZONTA 20	AL 1:1000 (A 40	′ 60m	r
PROJECT MANAGER NICK SOMERVILLE		0	VERTICAL 2	. 1:100 (A1)	6m 6m	ı
PROJECT DIRECTOR	Pronj		SCALE 1:	100 (A1)		
PATRICK BRADY	RPEQ 7112		ORIGINAL SH	EET SIZE A1		1

	CLIENT	MIRVAC QLD PTY LTD	JOB CODE	
60m 6m	PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT	MIR-080)4
6m	LOCATION	TEVIOT ROAD, GREENBANK		REV
	SHEET TITLE	ROAD 114 LONG AND CROSS SECTIONS	C319	В

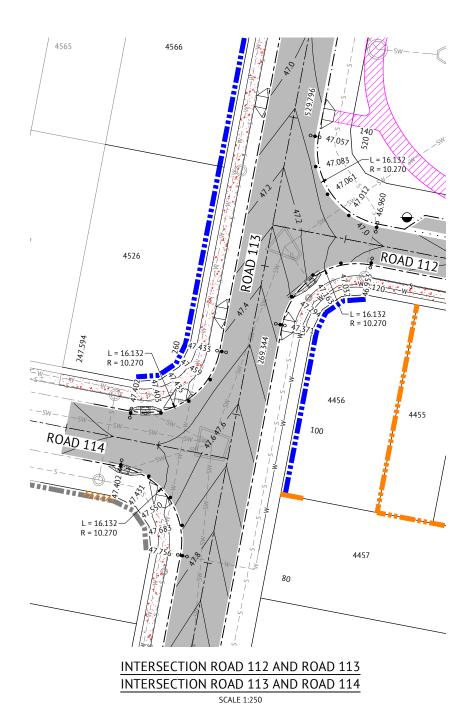
PAVEMENT DESIGN (PRELIMINARY)			
ROADS	-	ROAD 118	
CLASS	-	ACCESS STREET (TYPICAL)	
ESA's	-	5.90 x 10 ⁵	
SURFACE	-	35mm AC of 10mm MIX	
PRIMER TYPE	-	PRIME	
CBR 80	-	150mm	
CBR 45	-	150mm	
TOTAL BOX	-	335mm	

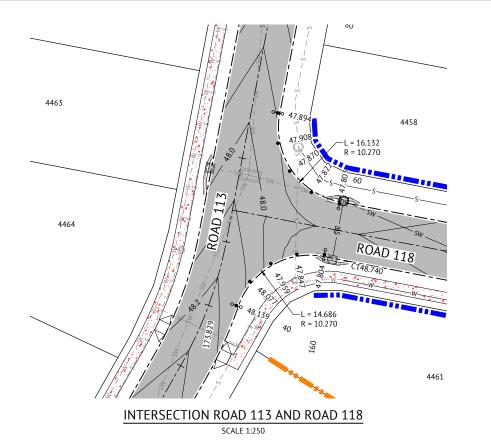


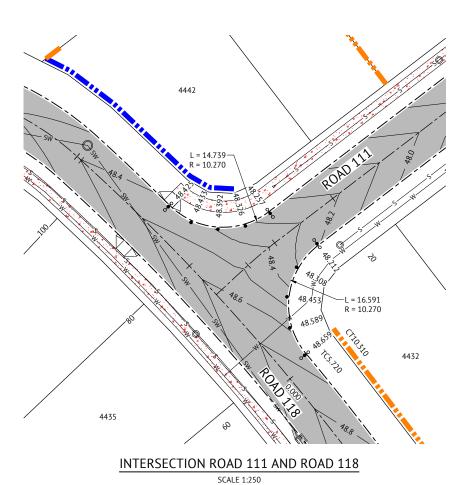
ROAD 118 LONGITUDINAL SECTION


SCALE 1:1000(H) 1:100(V)

	FOR CONSTRUCTION				
26/05/2025	В	ISSUED FOR CONSTRUCTION	KK	PB	
01/11/2024	Α	ISSUE FOR APPROVAL	KK	PB	
DATE	REV	DESCRIPTION	REC	APP	
	REVISIONS				




	CLIENT	MIRVAC QLD PTY LTD	JOB CODE	2.4
n	PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT	MIR-080	J4
1	LOCATION	TEVIOT ROAD, GREENBANK	SHEET NUMBER	REV
	SHEET TITLE	ROAD 118 LONG SECTION	C320	В



MIR-0804

LEGEND - PROPOSED

FINISHED MAJOR CONTOURS (0.20m) FINISHED MINOR CONTOURS (0.10m) PROPOSED 1.5m WIDE CONCRETE FOOTPATH. (UNO) REFER CONC. REQUIREMENTS ON DRG. No. C300 PROPOSED CONCRETE LANDSCAPING FOOTPATH.
REFER LANDSCAPING DRAWINGS FOR DETAILS.

PAVEMENT

PROPOSED KERB RAMP. REFER IPWEA STD DWG RS-090. PROPOSED IPWEA STD TYPE 'B1' KERB & CHANNEL.

REFER IPWEA STD DWG RS-080. PROPOSED IPWEA TYPE 'M3' KERB & CHANNEL. REFER IPWEA STD DWG RS-080.

PROPOSED IPWEA TYPE 'B2' KERB. REFER IPWEA STD DWG RS-080. PROPOSED IPWEA TYPE 'INV' CHANNEL. REFER IPWEA STD DWG RS-080.

LIP OF KERB LEVEL

PROPOSED SEWER

TRANSITION IN KERB AND CHANNEL TYPE PROPOSED STORMWATER

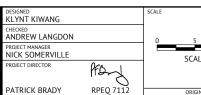
PROPOSED CONCRETE SLEEPER RETAINING WALL

PROPOSED CONCRETE PANEL RETAINING WALL

DURATHEM THRESHOLD TREATMENT. REFER TO URBIS EVERLEIGH LANDSCAPE MASTERPLAN - PART B (PAGE 20) FOR COLOUR AND PATTERN.

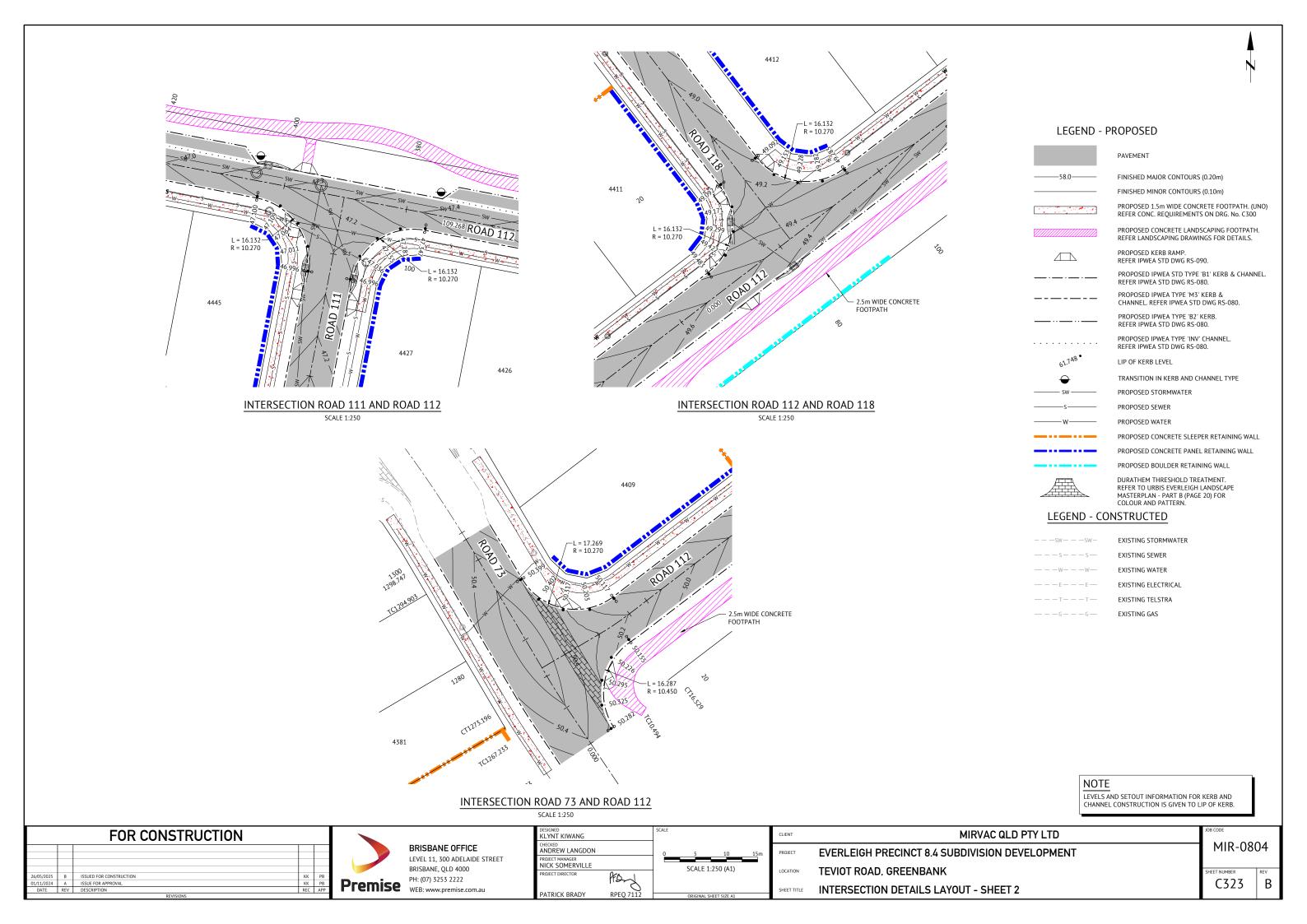
LEGEND - CONSTRUCTED

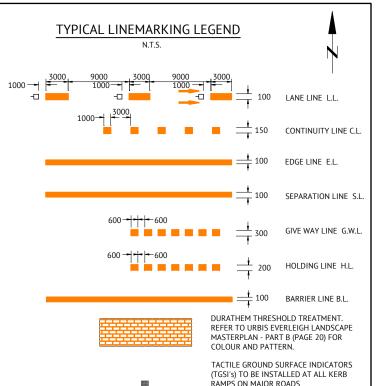
EXISTING STORMWATER EXISTING SEWER EXISTING WATER EXISTING ELECTRICAL EXISTING TELSTRA EXISTING GAS


NOTE

LEVELS AND SETOUT INFORMATION FOR KERB AND CHANNEL CONSTRUCTION IS GIVEN TO LIP OF KERB.

FOR CONSTRUCTION 25 B ISSUED FOR CONSTRUCTION 24 A ISSUE FOR APPROVAL REV DESCRIPTION


BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 PH: (07) 3253 2222


SCALE				
. 0	5	10	15m	
	SCALE 1	:250 (A1)		1

MIRVAC QLD PTY LTD **EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT** TEVIOT ROAD, GREENBANK **INTERSECTION DETAILS LAYOUT - SHEET 1**

MIR-0804

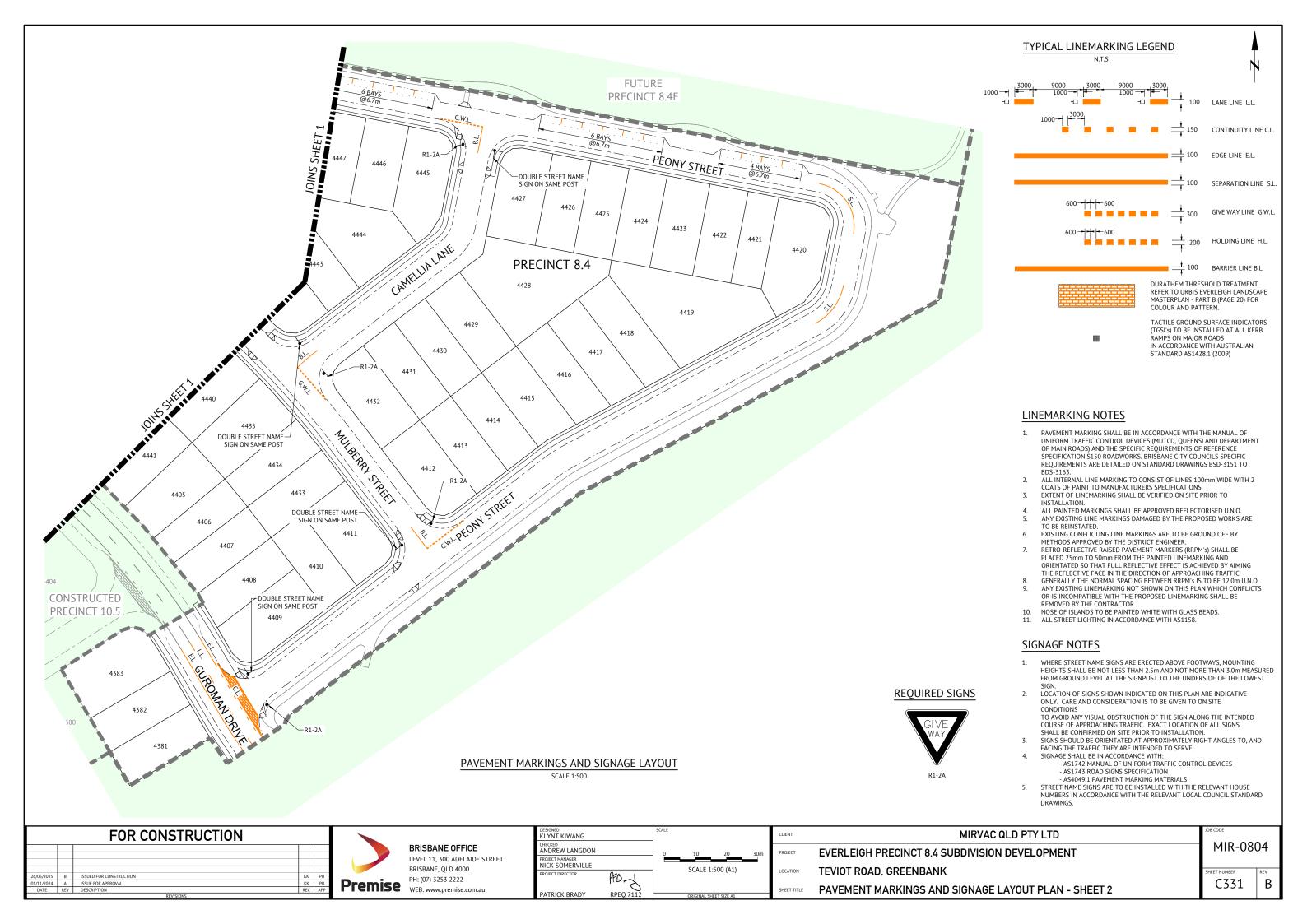
LINEMARKING NOTES

PAVEMENT MARKING SHALL BE IN ACCORDANCE WITH THE MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES (MUTCD, QUEENSLAND DEPARTMENT OF MAIN ROADS) AND THE SPECIFIC REQUIREMENTS OF REFERENCE SPECIFICATION S150 ROADWORKS. BRISBANE CITY COUNCILS SPECIFIC REQUIREMENTS ARE DETAILED ON STANDARD DRAWINGS BSD-3151 TO BDS-3163.

IN ACCORDANCE WITH AUSTRALIAN

STANDARD AS1428.1 (2009)

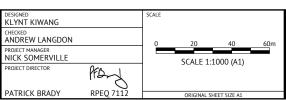
- ALL INTERNAL LINE MARKING TO CONSIST OF LINES 100mm WIDE WITH 2 COATS OF PAINT TO MANUFACTURERS SPECIFICATIONS.
- EXTENT OF LINEMARKING SHALL BE VERIFIED ON SITE PRIOR TO INSTALLATION.
- INSTALLATION.
 ALL PAINTED MARKINGS SHALL BE APPROVED REFLECTORISED U.N.O.
 ANY EXISTING LINE MARKINGS DAMAGED BY THE PROPOSED WORKS ARE
- TO BE REINSTATED.
 EXISTING CONFLICTING LINE MARKINGS ARE TO BE GROUND OFF BY
- METHODS APPROVED BY THE DISTRICT ENGINEER.
 RETRO-REFLECTIVE RAISED PAVEMENT MARKERS (RRPM's) SHALL BE
- PLACED 25mm TO 50mm FROM THE PAINTED LINEMARKING AND ORIENTATED SO THAT FULL REFLECTIVE EFFECT IS ACHIEVED BY AIMING THE REFLECTIVE FACE IN THE DIRECTION OF APPROACHING TRAFFIC.
- GENERALLY THE NORMAL SPACING BETWEEN RRPM'S IS TO BE 12.0m U.N.O.
- ANY EXISTING LINEMARKING NOT SHOWN ON THIS PLAN WHICH CONFLICTS OR IS INCOMPATIBLE WITH THE PROPOSED LINEMARKING SHALL BE REMOVED BY THE CONTRACTOR.
- NOSE OF ISLANDS TO BE PAINTED WHITE WITH GLASS BEADS.
 ALL STREET LIGHTING IN ACCORDANCE WITH AS1158.


SIGNAGE NOTES

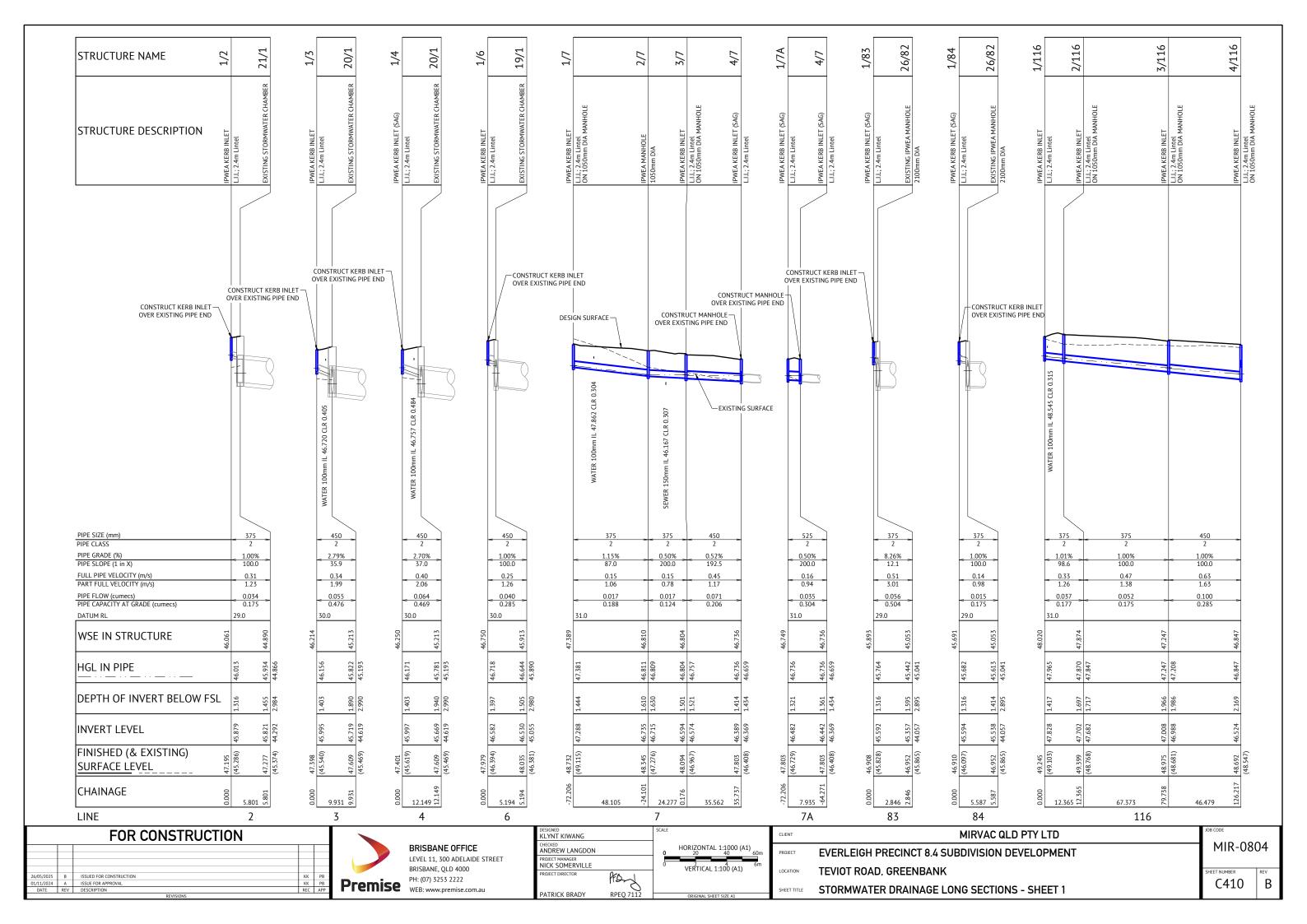
REQUIRED SIGNS

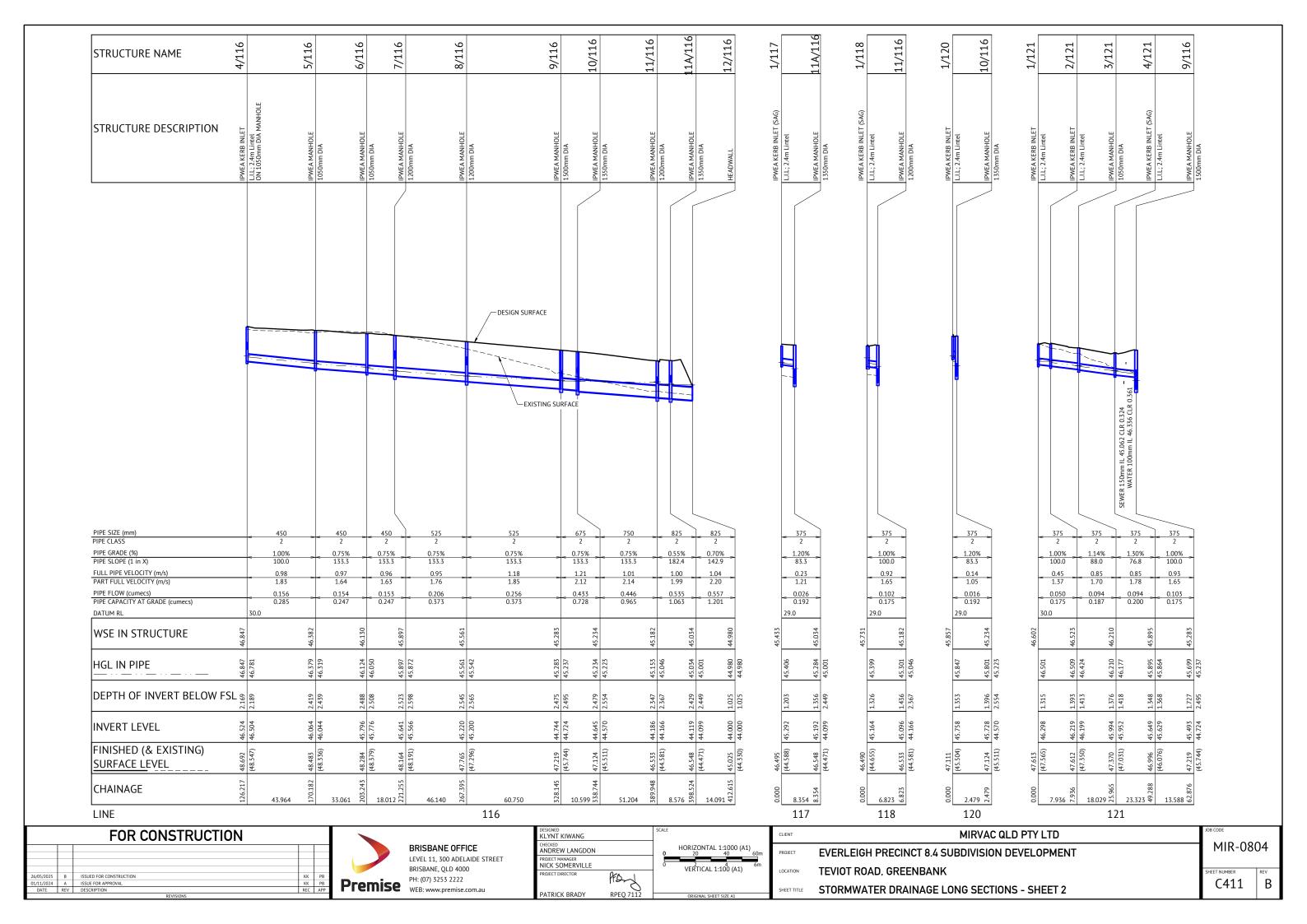
R1-2A

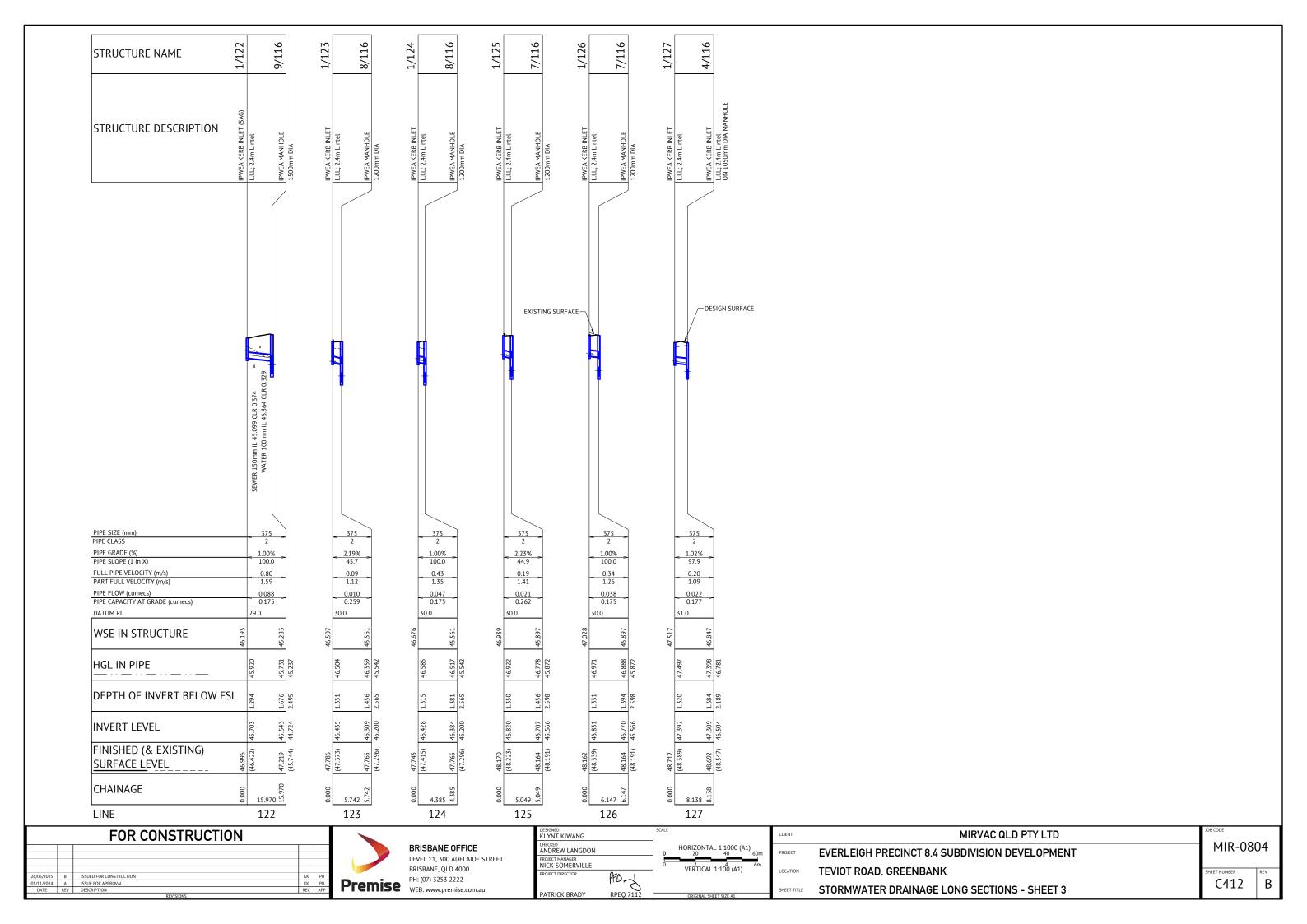
- WHERE STREET NAME SIGNS ARE ERECTED ABOVE FOOTWAYS, MOUNTING HEIGHTS SHALL BE NOT LESS THAN 2.5m AND NOT MORE THAN 3.0m MEASURED FROM GROUND LEVEL AT THE SIGNPOST TO THE UNDERSIDE OF THE LOWEST
- LOCATION OF SIGNS SHOWN INDICATED ON THIS PLAN ARE INDICATIVE ONLY. CARE AND CONSIDERATION IS TO BE GIVEN TO ON SITE CONDITIONS
- TO AVOID ANY VISUAL OBSTRUCTION OF THE SIGN ALONG THE INTENDED COURSE OF APPROACHING TRAFFIC. EXACT LOCATION OF ALL SIGNS
- SHALL BE CONFIRMED ON SITE PRIOR TO INSTALLATION.
 SIGNS SHOULD BE ORIENTATED AT APPROXIMATELY RIGHT ANGLES TO, AND
- FACING THE TRAFFIC THEY ARE INTENDED TO SERVE. SIGNAGE SHALL BE IN ACCORDANCE WITH:
 - AS1742 MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES - AS1743 ROAD SIGNS SPECIFICATION
 - AS4049.1 PAVEMENT MARKING MATERIALS
- STREET NAME SIGNS ARE TO BE INSTALLED WITH THE RELEVANT HOUSE NUMBERS IN ACCORDANCE WITH THE RELEVANT LOCAL COUNCIL STANDARD



LEGEND


STORMWATER CATCHMENT BOUNDARY 1/A 0.2311ha STORMWATER CATCHMENT NUMBER AND AREA PROPOSED STORMWATER LINE CONSTRUCTED STORMWATER LINE FINISHED CONTOURS (0.50m) — — 12.0 — — EXISTING CONTOURS (1.00m)


		FOR CONSTRUCTION				
				\vdash		
26/05/2025	В	ISSUED FOR CONSTRUCTION	KK	PB		
01/11/2024	Α	ISSUE FOR APPROVAL	KK	PB		
DATE	REV	DESCRIPTION	REC	API		
	PEVISIONS					

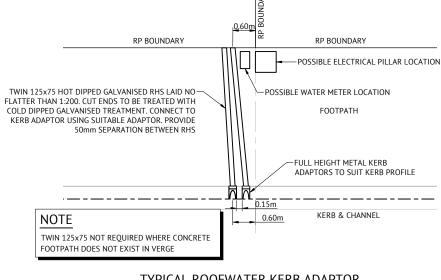


MIR-080 ²	1
MIR-()X()2	4
14III 000	+
SHEET NUMBER RE	
C400	В
	SHEET NUMBER RE

STORMWATER DRAINAGE NOTES

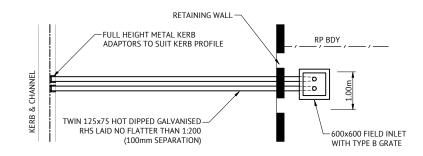
- ALL STORMWATER DRAWINGS ARE TO BE READ IN CONJUNCTION WITH DRAWING C001. STORMWATER LAYOUT PLANS, NOTES AND DETAILS.
- STORMWATER PITS ARE TO BE CONSTRUCTED INSITU IN ACCORDANCE WITH DRAWINGS OR AS VARIED AS NOTED ON THE DRAWING, PREFABRICATED STORMWATER PITS CAN BE USED SUBJECT TO WRITTEN APPROVAL FROM THE SUPERINTENDENT, CLASS D HEAVY DUTY GALVANIZED STEEL GRATES ARE TO BE FITTED IN TRAFFIC AREAS, CLASS B LIGHT DUTY GALVANIZED STEEL GRATES ARE
- TO BE FITTED IN LANDSCAPE AREAS UNLESS NOTED OTHERWISE.
 ALL DRAINAGE EXCAVATION AND CONSTRUCTION SHALL BE CARRIED OUT IN ACCORDANCE WITH AS3500 AND THE APPLICABLE LOCAL AUTHORITY SPECIFICATIONS AND STANDARD DETAILS.
- ALL MATERIALS SHALL MEET THE REQUIREMENTS OF AS1254 & AS1273.
 ALL uPVC PIPES SHALL BE CLASS 'SN8' FOR DN150 & DN225, AND CLASS 'SN6'
- FOR DN100 UNLESS NOTED OTHERWISE.
 PIPES SHALL BE LAID AT MIN. 1% GRADE UNLESS NOTED OTHERWISE.
- CONTRACTOR MUST VERIFY THAT ALL PIPE LEVELS AND GRADES CAN BE ACHIEVED PRIOR TO CONSTRUCTING DRAIN LINES. ANY CONFLICT SHALL BE REPORTED TO THE SUPERINTENDENT FOR ANY NECESSARY ALTERATIONS PRIOR TO ANY CONSTRUCTION OF CONNECTING PIPEWORK
- WHERE PIPES ARE TO BE LAID WITHIN THE ZONE OF INFLUENCE OF STRUCTURAL LOADINGS (e.g. BUILDING FOOTINGS, RETAINING WALLS...etc). THE BUILDER SHALL PROVIDE ADEQUATE BRIDGING / PROTECTION. WHERE ANY DOUBT MAY EXIST REFERENCE SHALL BE MADE TO THE DESIGNER OF THE STRUCTURE.
- BENCHING OF PIT STRUCTURES SHALL HAVE A SMOOTH FINISHED SURFACE, AND PIPES SHALL NOT PROJECT INSIDE THE SHAFT OF THE PIT.
- WHERE RECTANGULAR PIT STRUCTURES ARE USED, PIPES MUST NOT CONNECT TO THE PIT AT CORNERS.
- ALL CONSTRUCTION AND EXCAVATIONS SHALL BE CARRIED OUT IN ACCORDANCE WITH THE CURRENT REQUIREMENTS OF THE WORK HEALTH AND SAFETY ACT 2011 AND SUBSEQUENT AMENDMENTS.
- ALL STORMWATER PIPES SHALL BE CLASS '2' (UNO) R.C. PIPES UNLESS AN ALTERNATIVE IS APPROVED BY THE SUPERINTENDENT PRIOR TO CONSTRUCTION.
- ALL TEMPORARY ROOFWATER OUTLETS TO BE EXCAVATED AT 1 IN 200 TO NATURAL SURFACE.
- ALL ROOFWATER PIPES CROSSING CONCRETE FOOTPATHS ARE TO BE INSTALLED PRIOR TO CONSTRUCTION OF CONCRETE FOOTPATHS
- INSTALL 150mm DIAMETER PVC ROOFWATER HOUSE CONNECTION STUB INTO ROOFWATER PITS. INSTALL AT 750mm DEPTH TYPICAL OR 50mm FROM THE BASE OF PIT (WHICHEVER IS SHALLOWER).

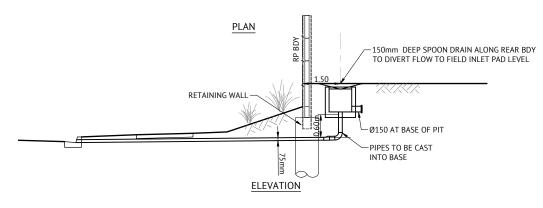
REFERENCE POINT LOCATION FOR DRAINAGE STRUCTURES


STRUCTURE TYPE	HORIZONTAL CONTROL POINT [REFERENCE POINT LOCATION]	VERTICAL CONTROL REFERENCE LEVEL
MANHOLE	CENTRELINE OF MAIN SHAFT	FINISHED SURFACE LEVEL AT CENTRE OF MAIN SHAFT
GULLY PIT OVER MANHOLE	CENTRE OF GULLY PIT	LIP LEVEL
GULLY PIT (LIP IN LINE)	CENTRE OF GULLY PIT	LIP LEVEL
HEADWALL	INTERSECTION OF HEADWALL FACE AND PIPE CENTRE LINE	INVERT LEVEL
FIELD INLET	CENTRE OF PIT	TOP OF CONCRETE PIT
ROOFWATER PIT	CENTRE OF PIT	TOP OF GRATE

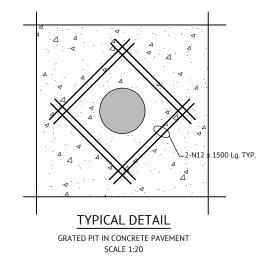
EXCAVATION IN ROCK NOTE:

CONTRACT SHALL INCLUDE TREATING, SIZING CONDITIONING AND PROCESSING ALL TYPES OF ROCK IN ALL EXCAVATIONS. PROCESSING TO BE COMPLETED AS PER MORRISON GEOTECHNICAL REPORTS TO ENSURE LEVEL 1 IS ACHIEVED.


TRENCH SPOIL NOTE:


SPOILAGE OF EXCESS MATERIAL TO BE PLACED INTO THE SOUTHERN DAM REHABILITATION AREA INCLUDING ALL LEVEL ONE COMPACTION REQUIREMENTS AND TESTING IN ACCORDANCE WITH MORRISON GEOTECHNICAL SPECIFICATION AND ALL LOCAL AUTHORITY STANDARDS, AND SHALL BE FREE DRAINING.

TYPICAL ROOFWATER KERB ADAPTOR **OUTLET DETAIL**


N.T.S.

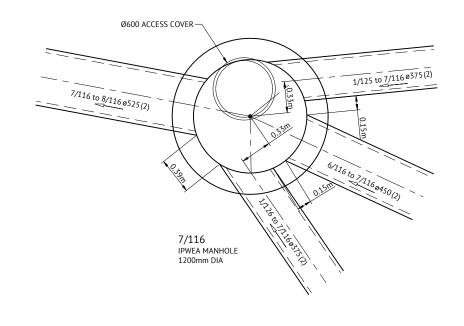
TYPICAL ROOFWATER PROPERTY PIT TO KERB ADAPTOR OUTLET DETAIL

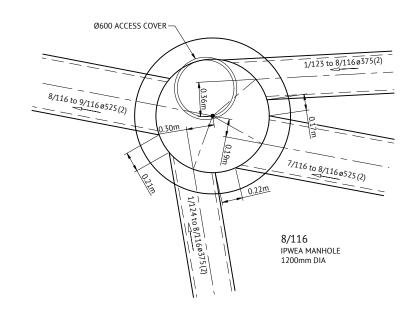
N.T.S.

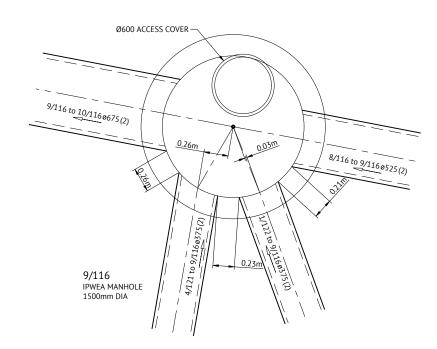
STORMWATER DRAINAGE LONG SECTION CHAINAGE LENGTHS ARE MEASURED FROM NODE CENTRE POINTS ALONG THE PROPOSED ALIGNMENT INCLUDING PIPE OFFSETS SUCH AS TO CENTRE OF PIT SIDE WALL AND CUSTOM PIPE SPACING INTO STRUCTURES.
REFER STORMWATER DRAINAGE STRUCTURE DETAILS DRAWINGS

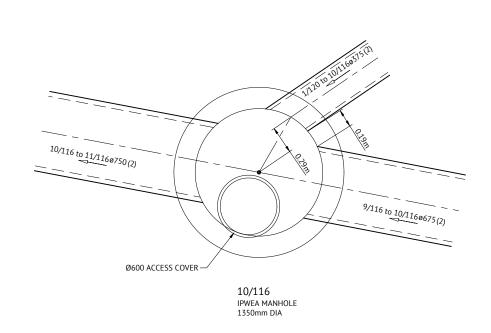
FOR CONSTRUCTION

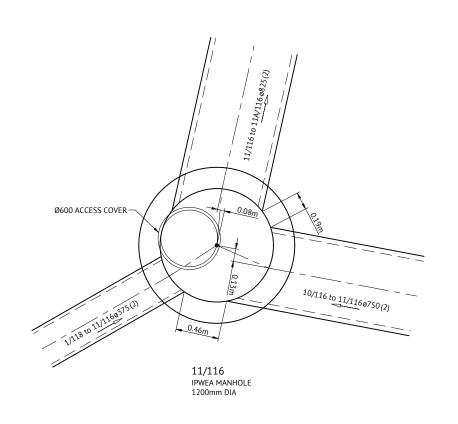
26/05/2025 B ISSUED FOR CONSTRUCTION KK	PB
01/11/2024 A ISSUE FOR APPROVAL KK	PB
DATE REV DESCRIPTION REC	APP

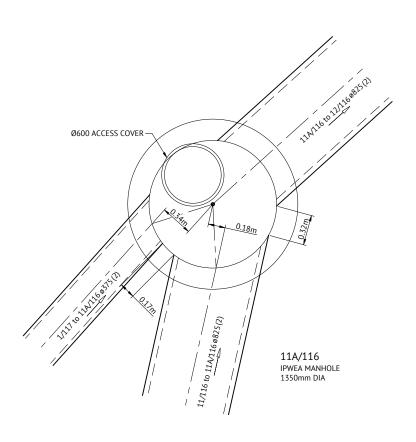

BRISBANE OFFICE


LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 PH: (07) 3253 2222 Premise PH: (U/) 3233 2222 WEB: www.premise.com.au


DESIGNED		SCALE
KLYNT KIWANG		
CHECKED		
ANDREW LANGDON		
PROJECT MANAGER		NTS
NICK SOMERVILLE		
PROJECT DIRECTOR	Den 1	
	riby	
	0	
PATRICK BRADY	RPEQ 7112	ORIGINAL SHEET SIZE A1


CLIENT	MIRVAC QLD PTY LTD	JOB CODE		
PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT MIR-1		.002	
LOCATION	TEVIOT ROAD, GREENBANK	SHEET NUMBER	REV	
SHEET TITLE	STORMWATER DRAINAGE NOTES AND DETAILS	C420	В	





		FOR CONSTRUCTION		
				Г
				Г
				Г
				Г
26/05/2025	В	ISSUED FOR CONSTRUCTION	KK	П
01/11/2024	Α	ISSUE FOR APPROVAL	KK	Ε
DATE	REV	DESCRIPTION	REC	1
		REVISIONS		

	BRISBANE OFFICE
	LEVEL 11, 300 ADELAIDE STREET
	BRISBANE, QLD 4000
	PH: (07) 3253 2222
2	WFR: www.premise.com.au

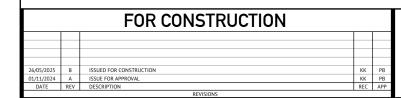
DESIGNED KLYNT KIWANG		SCALE			
CHECKED ANDREW LANGDON		0	0.4	0.8	1.2m
PROJECT MANAGER				0.0	
NICK SOMERVILLE			SCALE 1	1:20 (A1)	
PROJECT DIRECTOR	PFD		JONEE .	1.20 (11)	
PATRICK BRADY	RPFO 7112		ODICINAL S	LIEET SIZE A1	

	CLIENT	MIRVAC QLD PTY LTD	JOB CODE	<u> </u>	
n	PROJECT	VERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT MIR-0		304	
	LOCATION	TEVIOT ROAD, GREENBANK	SHEET NUMBER	REV	
	SHEET TITLE	STORMWATER DRAINAGE STRUCTURE DETAILS	C430	В	

LOCATION	TIMI	E SUB-CAT	CHMEN	IT RUN	IOFF			INLET DES	IGN							AIN DES								Н	EADLOS	SES					PAR	T FULI	-		DES	IGN LEV	ELS		
		C A	CA	Q				Qg	Qb		tc	1 (Î.A	Qp	L	S	+		Vf=Q/A			STRUCT	TURE RAT	ios V2,	/2g Ku	hu	Kw	hw	Sf	hf		Vn -						\vdash	
STRUCTURE NUMBER DOWNSTREAM STRUCTURE SUB-CATCHMENTS CONTRIBUTING	SUB-CATCHMENT TIME OF CONCENTRATION RAINFALL INTENSITY	CO-EFFICIENT OF RUNOFF SUB-CATCHMENT AREA	≾ I≞	SUB-CATCHIMENT DISCHARGE FLOW IN K&C	(INC. BYPASS)	FLOW DEPTH	ROAD GRADE AT INLET	HALF ROAD CAPACITY FLOW INTO INLET	BYPASS FLOW	BYPASS STRUCTURE NUMBER	CRITICAL TIME OF CONCENTRATION	7 9	SUM ADDITIONAL	PIPE FLOW	REACH LENGTH	PIPE GRADE	PIPE/BOX DIMENSIONS	CLASS	FULL PIPE VELOCITY	TIME OF FLOW IN REACH	CHARTS USED	Qg/Qo	Du/Do	S/D0	VELOCITY HEAD UPSTREAM HEADLOSS		W.S.E. CO-EFFICIENT	CHANGE IN W.S.E.		PIPE FRICTION HEADLOSS (L x Sf)	DEPTH	NORMAL DEPTH VELOCITY (MINOR STORM)	NOKMAL DEPTH VELUCITY (1 YEAR STORM) UPSTREAM OBVERT LEVEL	DOWNSTREAM OBVERT LEVEL	UPSTREAM H.G.L.	DOWNSTREAM H.G.L.	W.S.E.	SURFACE OR GRATE LEVEL	STRUCTURE NUMBER
	min mm/l	h ha	ha	l/s	l/s m	n m	%	l/s l/s			min r	nm/h I	na l/s	l/s	m	%	mm	1	m/s	min				n	n	m		m	%	m	m	m/s	m/s m	m	m	m	m	m	
1/2 21/1 1/2	8.00 113	0.75 0.146 0.	110 34	4 34	4 2.2	71 0.049	3.22	125 34	0	1/118	8.00 1	.13 0.1	10 0	34	5.750	1.009	375	2	0.31	0.05	32	1.00	1.1	13 0.00	05 9.70	0.048		0.048 1	1.35 0	.050	0.113	1.23	1.13 46.254	46.196	46.013	45.934		47.195	1/2
21/1																								_													44.890		21/1
1/3 20/1 1/3	8.00 113	0.75 0.223 0.	167 52	2 55	5 2.77	72 0.049	0.31	86 55	0	1/84	8.00 1	13 0.1	67 0	55	9.790	2.826	450	2	0.34	0.08	32	1.00	1.1	13 0.00	06 9.70	0.059		0.059	3.36 0	.191 (0.103	1.99	1.8 46.445	46.169	46.156	45.822		47.398	1/3
20/1 1/4 20/1 1/4	9.00 117	0.75 0.271 0.	207 6/	4 64	1	0.017	0.84	375 64	0	1/3	9.00 1	.13 0.2	07 0	64	11 00/	2.738	450	2	0.40	0.10	77	1.00	1 1	18 0.00	08 9.70	0.079		0.079 7	2 21 0	220 0	1112	2.06	1.89 46.447	16 110	16 171	<i>I</i> E 701		47.609 47.401	20/1
20/1	8.00 113	0.73 0.271 0.	.203 0-	- 0-	-	0.017	0.64	3/3 04	-	1/3	0.00	.13 0.2	03 0	04	11.554	2.730	450	2	0.40	0.10	32	1.00	1	10.00	36 9.70	0.073		0.079	5.21 0	.236	J.112	2.00	1.09 40.447	40.119	40.171	43.761		47.609	20/1
1/6 19/1 1/6	8.00 113	0.75 0.170 0.	127 40	0 40	0 2.4	37 0.070	0.96	130 40	0	1/4	8.00 1	.13 0.1	27 0	40	5.194	1.000	450	2	0.25	0.04	32	1.00	1.0	0.00	03 9.70	0.031		0.031 1	1.43 0	.042	0.114	1.26	1.16 47.032	46.980	46.718	46.644	_	47.979	1/6
19/1																																					45.913	48.035	19/1
											-						_							_					_										
1/7 2/7 1/7	8.00 113	0.75 0.072 0.0	054 17	7 17	7 1.76	65 0.054	0.91	125 17	0	3/7	8.00 1	.13 0.0	54 0	17	48.105	1.150	375	2	0.15	0.40	32	1.00	1.0	0.00	01 7.00	0.008		0.008	1.18 0	.545	0.076	1.06	0.97 47.663	47.110	47.381	46.811	47.389	48.734	1/7
2/7 3/7 1/7											8.40 1	11 0.0	54 0	17	24.277	0.500	375	2	0.15	0.20	34 37	0.00 1	1.00 1.0	0.00	0.72	0.001		0.001	0.02 0	.032	0.093	0.78	0.72 47.090	46.969	46.809	46.804	46.810	48.345	2/7
3/7 4/7 1/7 3/7	8.00 113	0.75 0.235 0.	176 55	5 55	5 2.80	03 0.078	0.88	120 55	0	1/7A	8.00 1	13 0.2	26 0	71	35.562	0.520	450	2	0.45	0.30	32 33 34	0.77	0.83 1.1	10 0.01	10 4.66	0.047		0.047	0.06 0	.075	0.182	1.17	1.08 47.024	46.839	46.757	46.736	_	48.094	3/7
4/7				_	_					-												1												1					4/7
1/7A 4/7 1/7A 4/7	8.00 113	0.75 0.150 0.	112 35	5 35	5	0.000	0.39	375 35	0	4/7	8.00 1	13 0.1	12 0	35	7.935	0.500	525	2	0.16	0.07	52	1.00	1.0	0.00	01 9.70	0.013		0.013	0.00	.002	J.121	0.94	0.86 47.007	46.967	46.736	46.736		47.803 47.803	1/7A 4/7
1/83 26/82 1/83	8.00 113	0.69 0.192 0.	132 4	1 56	6	0.007	0.17	360 56	0	LOST	8.00 1	.13 0.1	32 0	56	2 716	8.660	375	2	0.51	0.02	32	1.00	1 7	34 0.01	13 9.70	0.129		0.129 1	11 34 0	000	1085	3.01	2.63 45.967	45 732	45 764	45 442	45.893		1/83
26/82	0.00 113	0.03 0.132 0.	1.152	1 30		0.007	0.17	300 30	-	2031	0.00	0.1	32 0	30	2.710	0.000	373		0.51	0.02	32	1.00	1	0.0.	13 7.70	0.127		0.127	11.51	.000	3.003	5.01	13.707	15.7 52	15.701	13.112	_	46.952	
1/84 26/82 1/84	6.00 122	0.76 0.060 0.0	045 15	5 15	5	0.000	0.53	375 15	0	1/83	6.00 1	22 0.0	45 0	15	5.448	1.025	375	2	0.14	0.05	32	1.00	1.0	0.00	01 9.70	0.010		0.010 1	1.23 0	.051	0.075	0.98	0.9 45.969	45.913	45.682	45.613	45.691		
26/82																																					45.053	46.952	26/82
1/116 2/116 1/116	8.00 113	0.75 0.156 0.	117 37	7 37	7 2.3	33 0.051	3.73	73 37	0	1/7	8.00 1	13 0.1	17 0	37	12.282	1.021	375	2	0.33	0.10	32	1.00	1.1	15 0.00	06 9.70	0.055		0.055	0.77 0	.116	0.116	1.26	1.16 48.203	48.077	47.965	47.870	48.020	49.245	1/116
2/116 3/116 1/116 2/116	6.00 122	0.76 0.064 0.	048 16	6 16	6 1.79	98 0.055	0.76	111 16	0	1/127	8.10 1	.13 0.1	65 0	52	67.373	1.000	375	2	0.47	0.56	42 46 43 47	0.31 1	1.00 1.0	0.01	11 2.07	0.023	2.45	0.027	0.89	.638	0.140	1.38	1.27 48.057	47.383	47.847	47.247			
3/116 4/116 1/116 2/116 3/116	8.00 113	0.75 0.213 0.	159 50	0 50	0 2.91	10 0.080	0.61	109 50	0	4/116	8.66 1	.10 0.3	25 0	100	46.479	1.000	450	2	0.63	0.39	33 34	0.49	0.83 1.0	0.02	20 1.97	0.039		0.039	0.78 0	.412	0.184	1.63	1.51 47.438	46.974	47.208	46.847	47.247	48.975	3/116
4/116 5/116 1/127 1/116 2/116 3/116 4/116	8.00 113	0.75 0.167 0.	125 39	9 39	9 2.64	46 0.074	0.61	105 39	0	1/126	8.39 1	.11 0.5	04 0	156	43.964	1.000	450	2	0.98	0.37	33 34	0.24 1	1.00 1.1	L5 0.0 ⁴	49 1.35	0.066		0.066	0.91 0	.432	0.238	1.83	1.7 46.954	46.514	46.781	46.379	46.847	48.692	4/116
5/116 6/116 1/127 1/116 2/116 3/116											8.75 1	.10 0.5	04 0	154	33.061	0.750	450	2	0.97	0.28	37 42 43	0.00 1	1.00 1.1	14 0.04	48 1.24	0.060	1.30	0.062	0.59 0	.233 (0.258	1.64	1.52 46.494	46.246	46.319	46.124	46.382	48.483	5/116
6/116 7/116 4/116 6/116 7/116 1/127 1/116 2/116 3/116 4/116																						1																	
· ·											9.03 1	.09 0.5	04 0	153	18.012	0.750	450	2	0.96	0.15	42 46 43 47	0.00 1	1.00 1.1	18 0.04	4/ 1.5/	0.074	1./0	0.080	0.85	.133 (J.256	1.63	1.52 46.226	46.091	46.050	45.897	46.130	48.284	6/116
7/116 8/116 1/125 1/126 1/127 1/116 2/116 3/116 4/116											9.18 1	.08 0.6	85 0	206	46.109	0.751	525	2	0.95	0.38	34 37	0.00 1	1.00 1.0	0.04	46 0.54	0.025		0.025	0.67 0	.339	0.279	1.76	1.64 46.091	45.745	45.872	45.561	45.897	48.164	7/116
8/116 9/116 1/123 1/124 1/125 1/126 1/127 1/116 2/116 3/116 4/116											9.56 1	.07 0.8	64 0	256	60.750	0.750	525	2	1.18	0.51	33 34	0.00 1	1.00 1.0	0.07	71 0.26	0.019		0.019	0.43 0	.338	0.320	1.85	1.73 45.725	45.269	45.542	45.283	45.561	47.765	8/116
9/116 1/121 2/121 4/121 1/122 1/123 1/124 1/125 1/126 1/127 1/116 2/116 3/116 4/116	0.00 0	0.000 0.	.000 0	0	1	0.000		0 0	0	1/120	8.94 1	09 1.4	27 0	433	10.599	0.750	675	2	1.21	0.09	34 37	0.00 1	1.00 1.0	0.07	75 0.61	0.046		0.046	0.03 0	.029	0.375	2.12	1.97 45.399	45.320	45.237	45.234	45.283	47.219	9/116
1/120 1/121 2/121 4/121 1/122 1/123 1/124 1/125 10/116 11/116 1/126 1/127 1/116 2/116											9.03 1	09 1.4	73 0	446	51.189	0.750	750	2	1.01	0.43	33 34	0.00 1	1.00 1.0	0.09	52 0.21	0.011		0.011	0.14 0	.079	0.358	2.14	1.98 45.320	44.936	45.223	45.153	45.234	47.124	10/116
3/116 4/116 1/118 1/120 1/121 2/121				_								\perp			1	-							_	\perp	_	1			_	+								<u></u>	
11/116 114/11 4/121 1/122 1/123 1/124 1/125 1/126 1/127 1/116 6 1/126 1/126 1/127 1/116 1/126 1/											9.15 1	.08 1.7	78 0	535	8.550	0.550	825	2	1.00	0.07	46 47	0.00 1	1.00 1.2	23 0.05	51 2.09	0.107	2.66	0.136	0.14 0	.012	0.414	1.99	1.84 44.991	44.944	45.046	45.034	45.182	46.533	11/116
11A/11 11A/11 6 12/116 1/127 1/128 1/120 1/121 12/116 1/124 1/125 1/126 1/127 1/116 2/116 3/116 4/116											9.22 1	.08 1.8	53 0	557	14.091	0.700	825	2	1.04	0.12	34 37	0.00	1.00 1.1	13 0.05	55 0.60	0.033		0.033	0.15 0	.021	0.395	2.20	2.04 44.924	44.825	45.001	44.980	45.034	46.548	11A/11 6
12/116																																					44.980	45.025	12/116
1/117 11A/11 1/117	6.00 122	0.76 0.100 0.	076 26	6 26	6	0,000	0.16	361 26	0	LOST	6.00 1	.22 0.0	76 0	26	8.202	1 222	375	2	0.23	0.07	32	1.00	1.0	7 0.00	03 9.70	0.027		0.027 1	1 46 0	089	0.093	1 21	1.11 45.667	45 567	45 406	45 284			
1/118 11/116 1/118			325 10		02			377 102				13 0.3			6.014		375	2	0.92	0.06		1.00			43 7.63		_						1.53 45.539						
			_						+	1/117								1	+			1.00		_								-		-	-				
1/120 10/116 1/120			046 16			10 0.066			U .					16	2.276		375	2	0.14	0.02		1.00			01 9.70				1.86 0		0.073			46.103		45.801	45.857	47.111	
1/121 2/121 1/121 2/121 3/121 1/121 2/121			160 50					146 50	1	1/122 4/121				50 94	7.936	_	375	2	0.45	0.07		1.00 0.47 1		27 0.01 26 0.03		0.100	2.66		0.09 0		0.137	_		46.594		46.509			
3/121 4/121 1/121 2/121	0.00 113	0.75 0.190 0.	142 4	9 45	5 2.31	1.00/	1.34	167 45	0		_	.13 0.3 .12 0.3	_	94	18.029	_	375 375	2	0.85		37 42 43		1.00 1.2	_		0.085			L.19 0 L.21 0		0.188	_		_	46.424	46.210 45.895	46.523	47.612	
4/121 9/116 1/121 2/121 4/121	6.00 122	0.76 0.042 0.	032 11	1 11	1	0.000	0.36	210 11	0			11 0.3		103		1.003		2	0.93	0.11			1.00 1.0			_	1		_			_	1.54 46.004						
1/122 9/116 1/122		0.75 0.372 0.			8			375 88	0	4/121				88	_	1.004	_	2		0.13		1.00			32 8.45	_							1.47 46.078		45.920	45.731	46.195	46.996	1/122
FOR CONS	TRUCT	TION .											DESIGNED KLYNT H	(IWANG			SC	ALE			Ī	CLIENT						N	MIRV.	AC QL	D P1	YLT	 D				JO	OB CODE	
1 51(551(5		• . 1						BRISE	BANE C	OFFICE			CHECKED								┠	PROJECT	F۷	FRI F	IGH P	RECIN	CT 8	4 SUBI									\dashv	MIR-	-0804
								LEVEL	11 700 4	DEL VIDE	CTDEET		DROIECT MA	NACED										\			J. U.			• •	• _								

25 B ISSUED FOR CONSTRUCTION 24 A ISSUE FOR APPROVAL REV DESCRIPTION

LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000


PROJECT MANAGER
NICK SOMERVILLE
PROJECT DIRECTOR PFD RPEQ 7112

PATRICK BRADY

EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT

TEVIOT ROAD, GREENBANK STORMWATER CALCULATIONS 39% AEP STORM - SHEET 1

		LOCA	ATION		TIME		SUB-C	CATCHM	1ENT F	UNOFF	:			INLET	DESIGN	1							DRAIN	N DESIG	iN									HEADL	OSSES						PAR	T FULL	-			DES	SIGN LEV	/ELS		
				tc	I	С	Α	CA	Q						Qg	Qb		tc	I	CA		Qp	L	S			Vf=Q	/A			STRUC	TURE RA	TIOS V	2/2g	Ku l	nu K	w h	hw	Sf	hf	dn	Vn	Vn				Ή			
STRUCTURE NUMBER	DOWNSTREAM STRUCTURE		SUB-CATCHMENTS CONTRIBUTING	SUB-CATCHMENT		CO-EFFICIENT OF RUNOFF	SUB-CATCHMENT AREA	EQUIVALENT AREA	SUB-CATCHMENT	FLOW IN K&C (INC. BYPASS)	FLOW WIDTH	FLOW DEPTH	ROAD GRADE AT INLET	HALF ROAD CAPACITY	FLOW INTO INLET	BYPASS FLOW	BYPASS SIRUCIURE NUMBER	CRITICAL TIME OF CONCENTRATION	RAINFALL INTENSITY		SUM ADDITIONAL PIPE FLOW	PIPE FLOW	REACH LENGTH	PIPE GRADE	PIPE/BOX DIMENSIONS	CLASS	FULL PIPE VELOCITY	TIME OF FLOW	IN REACH	CHARTS USED	Qg/Qo	Du/Do	S/Do	VELOCITY HEAD	CO-EFFICIENT	UPSTREAM HEADLOSS	W.S.E. CO-EFFICIENT	CHANGE IN W.S.E.	PIPE FRICTION SLOPE PIPE FRICTION HEADLOSS	(L × Sf)	ORMAL DI	NORMAL DEPTH VELOCITY (MINOR STORM) NORMAL DEPTH VELOCITY	(1 YEAR STORM)	UPSTREAM ODVENT	DOWNSTREAM OBVERT LEVEL	UPSTREAM H.G.L.	DOWNSTREAM H.G.L.	W.S.E.	SURFACE OR GRATE LEVEL	
				min	mm/h		ha	ha	l/s	l/s	m	m	%	l/s	l/s	l/s		min	nm/h	ha	l/s	l/s	m	%	mm		m/s	m	in					m		m		m	%	m	m	m/s r	m/s	m	m	m	m	m	m	
1/123	8/116	5 1/12	!3	6.00	122	0.76	0.038	0.028	10	10	1.169	0.058	0.90	63	10	0 9)/116 6	5.00	122 0.0	028	0 1	.0 5	.611	2.238	375	2	0.09	0.0	5 32		1.00	1	.01 0.	000 7	.00 0.0	03	0.0	003 2.	53 0.1	.05 0.	.049	1.12 1.	1.03 46	.810	46.684	46.504	46.359	46.507	47.78	36
1/124	8/116	5 1/124	4	8.00	113	0.75	0.201	0.151	47	47	2.638	0.074	0.90	65	47	0 1	/122 8	3.00	113 0.1	151 (0 4	17 4	1.304	1.019	375	2	0.43	0.0	4 32		1.00	1	.24 0.	009 9	.70 0.0	91	0.0	91 1.	55 0.0	35 0.	.133	1.35 1	1.24 46	.803	46.759	46.585	46.517	46.676	47.74	13
1/125	7/116	5 1/12!	!5	6.00	122	0.76	0.080	0.061	21	21	1.833	0.073	0.70	55	21	0 1	./123 6	5.00	122 0.0	061 (0 2	21 4	1.935	2.279	375	2	0.19	0.0	14 32		1.00	1	.05 0.	002 9	.70 0.0	17	0.0	017 2.	84 0.0	78 0.	.071	1.41 1	1.29 47	.195	47.082	46.922	46.778	46.939	48.17	0
1/126	7/116	5 1/126	16	8.00	113	0.75	0.160	0.120	38	38	2.511	0.072	0.71	59	38	0 1	/124 8	3.00	113 0.:	120 (0 3	58 5	.913	1.040	375	2	0.34	0.0	5 32		1.00	1	.15 0.	006 9	.70 0.0	57	0.0)57 1.	35 0.0	053 0.	.118	1.26 1	1.16 47	.206	47.145	46.971	46.888	47.028	48.16	52
1/127	4/116	5 1/12	17	6.00	122	0.76	0.085	0.065	22	22	2.107	0.062	0.61	00	22	n 1	/125 6	: 00 /	122 0.0	165 (n 2	2 0	3.118	1.024	375	2	0.20	0.0	17 32		1.00	1	05 0	002 0	.70 0.0	19	0.0	119 1	22 0.0	77 0	089	1 09 (199 47	767	17 691	47 497	47 398	47.517	48 71	12

DESIGNED KLYNT KIWANG		SC
CHECKED ANDREW LANGDON		
PROJECT MANAGER NICK SOMERVILLE		
PROJECT DIRECTOR	Prand	

CLIENT	MIRVAC QLD PTY LTD
PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT
LOCATION	TEVIOT ROAD, GREENBANK
SHEET TITLE	STORMWATER CALCULATIONS 39% AEP STORM - SHEET 2

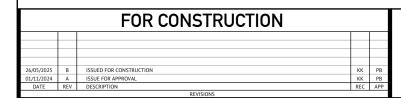
MIR-0804

		LOCATION	TIME	SU	JB-CAT	CHMEN	NT RUNOFI		INL	ET DES	SIGN					DRA	IN DESI	GN								EADLOS					PART	FULL			DESIG	N LEVEL:	5		R	UNOFF		
			tc I (c ,	A	CA	Q		Qg	Qb		tc	I C	١	Qp	L	S			Vf=Q/A	4		STRUCTU	RE RAT	OS V2/2	2g Ku	hu	Kw	hw	Sf hf		Vn										_
STRUCTURE NUMBER	DOWNSTREAM STRUCTURE	SUB-CATCHMENTS CONTRIBUTING	SUB-CATCHMENT TIME OF CONCENTRATION RAINFALL INTENSITY	PFICIENT OF	SUB-CATCHMENT AREA	EQUIVALENT AREA	SUB-CATCHMENT DISCHARGE FLOW IN K&C	ROAD GRADE AT INLET	FLOW INTO INLET	BYPASS FLOW	BYPASS STRUCTURE NUMBER	CRITICAL TIME OF CONCENTRATION	RAINFALL INTENSITY TOTAL (C x A)	SUM ADDITIONAL	PIPE FLOW	REACH LENGTH	PIPE GRADE	PIPE/BOX DIMENSIONS	CLASS	FULL PIPE VELOCITY	TIME OF FLOW IN REACH	CHARTS USED	Qg/Qo	Du/Do	VELOCITY HEAD		UPSTREAM HEADLOSS	W.S.E. CO-EFFICIENT	dge in w.s	PIPE FRICTION SLOPE PIPE FRICTION HEADLOSS	NORMAL DEPTH	NORMAL DEPTH VELOCITY	UPSTREAM OBVERT LEVEL	DOWNSTREAM OBVERT LEVEL	UPSTREAM H.G.L.	DOWNSTREAM H.G.L.	W.S.E.	SURFACE OR GRATE LEVEL	MAJOR SURFACE FLOW CAPACITY	MAJOR SURFACE FLOW DEPTH x VELOCITY	PRODUCT STRUCTURE NUMBER	
			min mm/h	ŀ	na	ha	l/s l/s	%	l/s	l/s		min	mm/h h	- 1		m	%	mm		m/s	min				m		m		m	% m	m	m/s	m	m	m	m	m	m	l/s	l/s m ²		
-	21/1	1/2	8.00 252 1.0	00 0.1	46 0.	.146 1	03 1888	3.22	206 1	1682	1/118	8.00	252 0.14	6 0	206	5.750	1.009	375	2	1.87	0.05	32	1.00	3.0	6 0.177	7 3.74	0.663		0.663 1.3	8 0.080	0.375	1.87	46.254	46.196	46.363	46.283			1968	1888 0.3	_	_
21/1														_					-																		46.283	47.277			21/1	_
20/1	20/1	1/3	8.00 252 1.0	0.2	23 0.	.223 1	56 1475	0.31	81 1	1394	1/84	8.00	252 0.22	3 0	325	9.790	2.826	450	2	2.04	0.08	32	1.00	3.1	0 0.213	3 3.69	0.785		0.785 1.3	0.129	0.273	3.22	46.445	46.169	46.605	46.476			2528	1475 0.3	.32 1/3	_
1/4	20/1	1/4	8.00 252 1.0	00 0.2	71 0	271 1	90 1024	0.84	112 9	912	1/3	8.00	252 0.27	1 0	322	11.994	2 738	450	2	2.02	0.10	32	1.00	3 1	1 0.209	9 3 68	0.768		0.768 1.3	7 0155	0.274	3 18	46 447	46 119	46.631	46 476	46.476	_	1548	1024	1/4	
20/1	,-		0.00 232 2.0	70 0.2	, 1	.2,1	1021	0.0 1	,	-		0.00	232 0.27	-	1322	11.771	2 30	130	+	2.02	0.10	102	1.00	3.2	0.20	3.00	0.700		0.700	0.233	0.27	3.10	10.117	10.117	10.032	10.170	46.476		15.0	-	20/1	_
1/6	19/1	1/6	8.00 252 1.0	00 0.1	70 0.	.170 1	19 311	0.96	-15 3	326	1/4	8.00	252 0.17	0 0	566	5.194	1.000	450	2	3.56	0.04	32			0.646	6 0.00	0.000		0.000 4.0	0.205	0.450	3.56	47.032	46.980	47.182	46.972	47.182	47.979	1873	311 0.1	.14 1/6	-
19/1																																					46.789	48.035			19/1	
1/7	2/7	1/7	8.00 252 1.0	0.0	72 0.	.072 5	1 141	0.91	108 3	32	3/7	8.00	252 0.07	2 0	108	48.105	1.150	375	2	0.98	0.40	32	1.00	2.9	8 0.049	9 3.17	0.156		0.156 0.3	8 0.184	0.204	1.76	47.663	47.110	48.252	48.068	48.407	48.734	1548	141 0.0	.08 1/7	
2/7	3/7			\perp								8.40			108		0.500		2	0.97		34 37		00 3.6	_		0.035		0.035 0.3	8 0.091	0.270	1.26	47.090	46.969		47.942					2/7	_
3/7	4/7	1/7 3/7	8.00 252 1.0	0.2	35 0.	.235 1	64 197	0.88	98 9	98	1/7A	8.00	252 0.30	2 0	203	35.562	0.520	450	2	1.27	0.30	33 34	0.48 0.8	83 3.0	0.083	3 1.24	0.102		0.102 0.5	0.180	0.363	1.47	47.024	46.839	47.839	47.659	_		1548	197 0.1	_	_
4/7 1/7A	1/7	1/7A	8.00 252 1.0	00 01	50 0	150 4	05 570	0.70	z -	75	4/7	8.00	252 045	0 0	3	7.075	0.500	בזנ	1	0.01	0.07	77	1.00	122	4 0.000	0 500	0.000		0.000	0.000	0.070	0.45	47.007	46.047	47.650	47.659	47.659		1264	570	4/7 1/7A	_
4/7	7//	410	0.00 232 1.0	0.1	0.	1 001.	8/د دی.	0.39	دا د	575	91	0.00	252 0.15	0 0)	7.935	0.500	525	4	0.01	0.07	32	1.00	2.2	U.UUL	0 3.98	0.000		0.000	0.000	0.038	0.45	77.007	46.967	77.039	77.009	47.660 47.659	_	1264	3/0	4/7	_
1/83	26/82	1/83	8.00 252 0.9	0.1	92 0.	.184 1	29 1689	0.17	154 1	1535	LOST	8.00	252 0.18	4 0	154	2.716	8.660	375	2	1.40	0.02	32	1.00	3.3	9 0.099	9 3.38	0.336		0.336 0.3	7 0.022	0.142	4.01	45.967	45.732	46.528	46.506	46.863		2800	1689	1/83	_
26/82																																					46.506	46.952			26/8	2
1/84	26/82	1/84	6.00 275 1.0	0.0	60 0.	.060 4	6 1230	0.53	0 1	1230	1/83	6.00	275 0.06	0 0	354	5.448	1.025	375	2	3.21	0.05	32			0.525	5 0.00	0.000		0.000 4.0	0.228	0.375	3.21	45.969	45.913	46.734	46.506	46.734	46.910	1855	1230	1/84	ı
26/82																																					46.506	46.952			26/82	2
1/116	2/116	1/116	8.00 252 1.0	00 0.1	56 0.	.156 1	09 109	3.73	19 9	90	1/7	8.00	252 0.15	6 0	19	12.282	1.021	375	2	0.18	0.10		1.00	3.3	5 0.002	2 3.42	0.005		0.005 0.0	0.002	0.084	1.05	48.203	48.077	49.080	49.079	49.085	49.245	1743	109 0.0	.08 1/116	ó
2/116	3/116	1/116 2/116	6.00 275 1.0	0.0	64 0.	.064 4	9 49	0.76	49 0) :	1/127	8.10	251 0.22	0 0	64	67.373	1.000	375	2	0.58	0.56	32 42 46 4 47	0.72 1.0	00 3.7	3 0.017	7 1.99	0.034	2.08	0.035 0.:	.3 0.088	0.156	1.46	48.057	47.383	49.045	48.956	49.080	49.399	1548	49 0.0	.04 2/116	6
3/116	4/116	1/116 2/116 3/116	8.00 252 1.0	00 0.2	13 0.	.213 1	49 149	0.61	117 3	52 ·	4/116	8.66	245 0.43	3 0	173	46.479	1.000	450	2	1.09	0.39	32 33 34	0.65 0.8	83 4.3	7 0.060	0 1.53	0.093		0.093 0.3	7 0.171	0.253	1.88	47.438	46.974	48.864	48.692	48.956	48.975	1264	149 0.0	.08 3/116	6
4/116	5/116	1/127 1/116 2/116 3/116 4/116	8.00 252 1.0	0.1	67 0.	.167 1	17 149	0.61	-28 1	176	1/126	8.39	248 0.67	2 0	166	43.964	1.000	450	2	1.04	0.37	33 34	0.00 1.0	00 2.6	3 0.056	6 0.25	0.014		0.014 0.3	4 0.149	0.247	1.86	46.954	46.514	47.675	47.526	47.689	48.692	1264	149 0.0	.08 4/110	6
F #446												0.75	244 0.63	2 0	150	77.044	0.750	450	-	1.00	0.20	77 42 47	000 46		0 0054	4 4 07	0.053	1.10	0.054		0.267	4.65	46.404	46.246	47.474	47.774	47.570	10.107		-+		
5/116	6/116	1/127 1/116 2/116 3/116 4/116										8.75	244 0.67	2 0	159	33.061	0.750	450	2	1.00	0.28	37 42 43	0.00 1.0	3.3	0 0.051	1 1.03	0.052	1.10	0.056 0.3	0.103	0.263	1.65	46.494	46.246	4/.4/4	4/.3/1	47.530	48.483			5/116	э —
6/116	7/116	1/127 1/116 2/116 3/116 4/116										9.03	242 0.67	2 0	154	18.012	0.750	450	2	0.97	0.15	42 46 43 4	7 0.00 1.0	00 3.5	6 0.048	8 1.22	0.058	1.33	0.064 0.3	9 0.053	0.257	1.64	46.226	46.091	47.312	47.260	47.376	48.284			6/116	6
7/116	8/116	1/125 1/126 1/127 1/116 2/116 3/116 4/116										9.18	240 0.91	3 0	267	46.109	0.751	525	2	1.23	0.38	37 42 43	0.00 1.0	00 3.2	3 0.077	7 0.82	0.063	0.84	0.065 0.3	8 0.177	0.329	1.87	46.091	45.745	47.196	47.019	47.261	48.164			7/110	6
8/116	9/116	1/123 1/124 1/125 1/126 1/127 1/116 2/116 3/116 4/116										9.56	237 1.15	2 0	366	60.750	0.750	525	2	1.69	0.51	34 37	0.00 1.0	00 3.4	7 0.146	6 0.39	0.057		0.057 0.3	2 0.440	0.423	1.96	45.725	45.269	46.962	46.522	47.019	47.765			8/116	6
9/116	10/116	1/121 2/121 4/121 1/122 1/123 1/124 1/125 1/126 1/127 1/116 2/116 3/116 4/116	0.00 0	0.0	00 0.	.000 0	36		0 3	36	1/120	8.94	243 1.90	3 0	571	10.599	0.750	675	2	1.60	0.09	34 37	0.00 1.0	00 2.6	6 0.130	0 0.57	0.074		0.074 0.4	6 0.049	0.450	2.25	45.399	45.320	46.448	46.399	46.522	47.219	1548	36	9/116	6
10/116	11/116	1/120 1/121 2/121 4/121 1/122 1/123 1/124 1/125 1/126 1/127 1/116 2/116 3/116 4/116										9.03	242 1.96	4 0	631	51.189	0.750	750	2	1.43	0.43	33 34	0.00 1.0	00 2.4	4 0.104	4 0.23	0.024		0.024 0.3	0.165	0.443	2.33	45.320	44.936	46.375	46.211	46.399	47.124			10/11	
11/116	11A/116	1/118 1/120 1/121 2/121 4/121 1/122 1/123 1/124 1/125 1/126 1/127 1/116 2/116 3/116 4/116										9.15	241 2.37	1 0	482	8.550	0.550	825	2	0.90	0.07	46 47	0.00 1.0	00 2.4	8 0.041	1 1.82	0.075	1.94	0.080 0.3	1 0.010	0.390	1.94	44.991	44.944	46.135	46.126	46.216	46.533			11/11	16
11A/116	12/116	1/117 1/118 1/120 1/121 2/121 4/121 1/122 1/123 1/124 1/125 1/126 1/127 1/116 2/116 3/116 4/116										9.22	240 2.47	1 0	504	14.091	0.700	825	2	0.94	0.12	34 37	0.00 1.0	00 2.4	6 0.045	5 0.62	0.028		0.028 0.:	2 0.017	0.373	2.15	44.924	44.825	46.097	46.080	46.126	46.548			11A/11	16
12/116																																					46.080	45.025			12/11	.6
1/117	11A/116	1/117	6.00 275 1.0	0.10	00 0.	.100 7	6 2972	0.16	36 2	935	LOST	6.00	275 0.10	0 0	36	8.202	1.222	375	2	0.33	0.07	32	1.00	2.3	2 0.005	5 5.67	0.031		0.031 0.0	0.004	0.110	1.33	45.667	45.567	46.129	46.126	46.160	46.495	3050	2972	1/117	7
1/118	11/116		8.00 252 1.0	00 0.4	34 0.	.434 3	04 1870	0.16	-112 1	1983	1/117	8.00	252 0.43	4 0	284	6.014	1.135	375	2	2.57	0.06	32			0.337	7 0.00	0.000		0.000 2.6	2 0.179	0.375	2.57	45.539	45.471	46.389	46.211	46.389	46.490	3050	1870	1/118	8
	10/116			_	_	.061 4		0.90				6.00			70	2.276		_	2	0.64	0.02		1.00	2.0	9 0.021	_	0.137	_	0.137 0.:		_		46.133	_			46.540					_
1/121	2/121	1/121	8.00 252 1.0	00 0.2	14 0.	.214 1	50 150	1.54	38 1	112	1/122	8.00	252 0.21	4 0	38	7.936	1.000	375	2	0.34	0.07	32	1.00	3.1	4 0.006	6 3.65	0.022		0.022 0.0	0.004	0.118	1.27	46.673	46.594	47.453	47.449	47.475	47.613	1929	150 0.1	.10 1/12	1
2/121		1/121 2/121	8.00 252 1.0	0.1	90 0.	.190 1	33 133	1.54	96 3	57	4/121	8.07			134		1.136		2	1.21	_	32 46 47	0.72 1.0				0.156	2.28							47.293			_	1929	133 0.0		_
3/121		1/121 2/121	1.00		-	2.15					4.4	8.22		_	_	23.322		_	2	1.19		37 42 43			0 0.073		0.060	0.85			_				47.128				1.5		3/12:	-
4/121		1/121 2/121 4/121	6.00 275 1.0									8.41		_	_	13.544	_		2	1.01		33 34		_	6 0.052		0.011	_	0.011 0.4		_			_	_			46.996	_		4/12:	
	9/116 8/116	· ·	8.00 252 1.0 6.00 275 1.0						138 S 57 3			-	252 0.37 275 0.03	_	138		2.238		2	0.52	0.13		1.00	_	0 0.079	_	_		0.284 0.0	1 0.006		_						46.996 47.786			.08 1/12	
	8/116		8.00 252 1.0												64		1.019		2	0.52	0.03		1.00		3 0.017										_				_		.16 1/12	_
	1															DESIGNED	D				ALE	1	<u> </u>		CLIENT								QLD F			1		1		JOB CODE		<u> </u>
		FOR CONST	RUCTION	A							DDIC	DANE	OFFICE			CHECKED	Γ KIWANG	3						L							MILLA	VAC	ALD F	11 LI						-	1IR-08	~ 4

| 5/05/2025 B | ISSUED FOR CONSTRUCTION | 1/11/2024 A | ISSUE FOR APPROVAL | DATE | REV | DESCRIPTION |

BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 Premise PH: (07) 3253 2222
WEB: www.premise.com.au

ANDREW LANGDON PROJECT MANAGER
NICK SOMERVILLE
PROJECT DIRECTOR PFD 1 RPEQ 7112


PATRICK BRADY

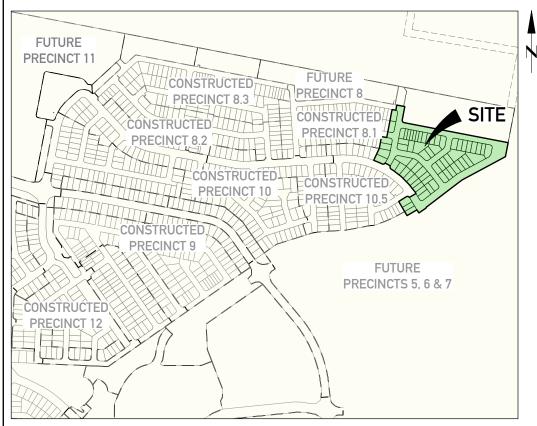
EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT TEVIOT ROAD, GREENBANK

STORMWATER CALCULATIONS 1% AEP STORM - SHEET 1

MIR-0804

	ı	LOCATION	TIME	SUB-0	CATCHM	1ENT R	UNOFF		INLE	T DESI	GN					D	RAIN DI	ESIGN								Н	EADLO	SSES					PART	FULL			DESIG	N LEVELS	;		RI	JNOFF		
			tc I C	Α	CA	Q			Qg (Qb		tc	I C	A	Q	p L	L	S			Vf=Q/A			STRUC	TURE RA	rios V2,	∕2g Kı	ı hu	Kw	hw	Sf	hf	dn	Vn										
STRUCTURE NUMBER	DOWNSTREAM STRUCTURE	SUB-CATCHMENTS CONTRIBUTING	SUB-CATCHMENT TIME OF CONCENTRATION RAINFALL INTENSITY CO-EFFICIENT OF RUNOFF	SUB-CATCHMENT AREA	EQUIVALENT AREA	SUB-CATCHMENT DISCHARGE	FLOW IN K&C (INC. BYPASS)	ROAD GRADE AT INLET	FLOW INTO INLET	BYPASS FLOW	BITASS SIRUCIONE NUMBER	CONCENTRATION	RAINFALL INTENSITY	I UI AL (C X A) SUM ADDITIONAL	PIPE FLOW		KEACH LENGIH	PIPE GRADE	PIPE/BOX DIMENSIONS	CLASS	FULL PIPE VELOCITY	TIME OF FLOW IN REACH	CHARTS USED	09/00	Du/Do	S/Do	UPSTREAM HEADLOSS	CO-EFFICIENT UPSTREAM HEADLOSS	W.S.E. CO-EFFICIENT	CHANGE IN W.S.E.	PIPE FRICTION SLOPE	PIPE FRICTION HEADLOSS (L × Sf)	NORMAL DEPTH	NORMAL DEPTH VELOCITY	UPSTREAM OBVERT LEVEL	DOWNSTREAM OBVERT LEVEL	UPSTREAM H.G.L.	DOWNSTREAM H.G.L.	W.S.E.	SURFACE OR GRATE LEVEL	MAJOR SURFACE FLOW CAPACITY	MAJOR SURFACE FLOW DEPTH x VELOCITY	PRODUCT	STRUCTURE NUMBEK
			min mm/h	ha	ha	l/s	l/s	%	l/s	l/s	1	min m	m/h ł	na l	′s l/	′s r	n	%	mm		m/s	min				n	1	m		m	%	m	m	m/s	m	m	m	m	m	m	l/s	l/s m	² /s	
1/125	7/116	1/125	6.00 275 1.00	0.080	0.080	61	92	0.70 2	8 64	4 1/	/123 6	.00 2	5 0.0	80 0	28	4.93	55 2.2	79 37	5 .	2 0	.25	0.04 3	2	1.00	1	26 0.00	3 9.70	0.032		0.032	0.03	0.001	0.083	1.54	47.195	47.082	47.261	47.260	47.293	48.170	1264	92 0.	.08	/125
1/126	7/116	1/126	8.00 252 1.00	0.160	0.160	112	289	0.71 1	.00 18	88 1/	/124 8	.00 2	0.1	60 0	100	5.91	.3 1.0	40 37	5 .	2 0	.91	0.05 33	2	1.00	1	99 0.04	2 7.07	7 0.296		0.296	0.33	0.020	0.203	1.64	47.206	47.145	47.280	47.260	47.576	48.162	1264	289 0.	.14	/126
1/127	4/116	1/127	6.00 275 1.00	0.085	0.085	65	65	0.61 3	4 31	1 1/	/125 6	.00 2	5 0.0	85 0	34	8.11	.8 1.0	24 37	5 .	2 C	.31	0.07 3	2	1.00	3.	52 0.00	5 3.24	4 0.016		0.016	0.04	0.003	0.112	1.24	47.767	47.684	48.696	48.692	48.712	48.712	1264	55 0.	.05 1	/127

DESIGNED KLYNT KIWANG		SCA
CHECKED ANDREW LANGDON		
PROJECT MANAGER NICK SOMERVILLE		
PROJECT DIRECTOR	Prand	


	MINVAC GED I II EID
PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT
LOCATION	TEVIOT ROAD, GREENBANK
SHEET TITLE	STORMWATER CALCULATIONS 1% AEP STORM - SHEET 2

MIRVAC QLD PTY LTD

JOB CODE	
MIR-0804	

EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT

TEVIOT ROAD, GREENBANK FOR MIRVAC QLD PTY LTD **SEWERAGE**

LOCALITY PLAN **REAL PROPERTY DESCRIPTION**

LOT 205 & 434 on RP845844

NAME OF ES	STATE	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT
SUBDIVIDER		Mirvac QLD Pty Ltd
APPLICATION No.		DEV2022/1277
SP DELEGATE APPRO	OVAL DATE	11/11/2022
COUNCIL DA APPRO	VAL No.	-
DRAWING/PLAN No.		C510-C511
No. OF ALLOTMENT	S	66
AREA ha		4.68ha
LENGTH OF SEWERS	DN150 uPVC SN8	774.635m

GENERAL NOTES

- ALL WORK AND MATERIALS SHALL BE IN ACCORDANCE WITH CURRENT SOUTH EAST QUEENSLAND SEWERAGE CODE SPECIFICATIONS AND
- UNLESS SPECIFIED OTHERWISE ALL MATERIALS AND WORK SHALL COMPLY WITH THE RELEVANT AUSTRALIAN STANDARDS.
- THE CONSTRUCTION OF THE SEWERAGE WORK SHOWN ON THIS DRAWING SHALL BE SUPERVISED BY AN ENGINEER WHO HAS RPEQ REGISTRATION. SEWERAGE WORKS NOT COMPLYING WITH THIS REQUIREMENT WILL NOT BE PERMITTED TO CONNECT INTO THE SEO SERVICE PROVIDER SEWERAGE
- 4. ALL WORK ASSOCIATED WITH LIVE SEWERS OR MAINTENANCE HOLES SHALL BE CARRIED OUT BY THE CONTRACTOR UNDER LOGAN WATER SUPERVISION AT THE DEVELOPER'S COST.
- ALL PIPES AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE "ACCEPTED PRODUCTS AND MATERIALS" LIST.
- EACH ALLOTMENT SHALL BE SERVED BY A DN100 PROPERTY CONNECTION. FOR ALLOTMENTS OTHER THAN SINGLE RESIDENTIAL, A DN150 PROPERTY CONNECTION SHALL BE PROVIDED.
- PROPERTY CONNECTIONS SHALL BE LOCATED WITHIN THE PROPERTY AS SHOWN IN THE DRAWINGS.
- SHOWN IN 1 HE DKAWINIOS.

 PROPERTY CONNECTION BRANCHES SHALL EXTEND INTO THE PROPERTY A
 MINIMUM OF 300mm AND A MAXIMUM OF 750mm.
- WHERE PIPES ARE LAID IN FILL, THE FILLING SHALL BE CARRIED OUT IN LAYERS NOT EXCEEDING 300mm (LOOSE) IN DEPTH AND SHALL BE COMPACTED UNTIL THE COMPACTION IS NOT LESS THAN 95% OF THE MATERIALS MAXIMUM COMPACTION WHEN TESTED IN ACCORDANCE WITH A.S. 1289 (MODIFIED COMPACTION). TESTING SHALL BE CARRIED OUT AFTER FACH ALTERNATE LAYER, IN ALL SUCH CASES APPROVAL OF CONSTRUCTED SEWERS WILL NOT BE ISSUED BY THE SEQ SERVICE PROVIDER UNLESS CERTIFICATES ARE PRODUCED CERTIFYING THAT THE REQUIRED
- COMPACTION HAS BEEN ACHIEVED.

 10. WHERE SEWERS HAVE A GRADE OF 1 IN 20 OR STEEPER,BULKHEADS SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE SEQ SEWER CODE.
- 11 THE CONTRACTOR SHALL VERIEV THE LOCATION AND DEPTH OF EXISTING SERVICES WITH RELEVANT AUTHORITIES BEFORE COMMENCING WORKS.
- 12 SEWERS SHALL BE DISUSED /ABANDONED IN ACCORDANCE WITH PROCEDURES SET OUT IN THE SEQ SEWER CODE.
- 13. BENCH MARK AND LEVELS TO AHD.
- 14. REFER TO BULK EARTHWORKS DRAWINGS FOR FINISHED SURFACE LEVELS. 15. ALL SEWER CONSTRUCTION WORK UNDERTAKEN BY THE CONTRACTOR SHALL COMPLY WITH THE REQUIREMENTS OF THE QUEENSLAND WORK HEALTH AND SAFETY ACT. FOR INFORMATION PHONE: 1300 369 915.

 16. THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL NECESSARY
- PERMITS TO ALLOW CONSTRUCTION OF THE SEWER SYSTEM.

 17. THE CONTRACTOR IS RESPONSIBLE FOR EXCAVATION AND SAFE SHORING TO ALLOW SEWER MAINTENANCE SECTION TO CARRY OUT LIVE SEWER
- 18. CONSTRUCT TRENCHES TO SEQ-SEW-1200-2, WITH EMBEDMENT TYPE 3 SUPPORT MINIMUM TO SEQ-SEW-1201-1, AND ROAD CROSSINGS TO SEQ-SEW-1205-1 AND LCC STANDARDS.
- 19 CONSTRUCT PROPERTY CONNECTIONS TO SEO-SEW-1100 SERIES
- 20. CONSTRUCT MAINTENANCE STRUCTURES TO SEQ-SEW-1300 SERIES.
- 21 CONSTRUCT BUILKHEADS TO SEO-SEW-1206-1 22. INSTALL DETECTABLE MARKER TAPE ON ALL MAINS AND PROPERTY
- CONNECTIONS 23. CALCAREOUS CONCRETE IN MAINTENANCE HOLES REQUIRED IN
- ACCORDANCE WITH SEQ WS&S D&C CODE REQUIREMENTS.

 24. CCTV OF SEWER TO BE UNDERTAKEN AND SUPPLIED TO SUPERINTENDENT PRIOR TO, BUT NO GREATER THAN 2 WEEKS BEFORE, THE ON-SITE

VEGETATION PROTECTION

A. TREES LOCATED ALONG THE FOOTPATH SHALL BE, TRANSPLANTED PRIOR TO CONSTRUCTION, OR REPLACED IF DESTROYED.

B. WHEN WORKING WITHIN 4m OF TREES, RUBBER OR HARDWOOD GIRDLES S HALL BE CONSTRUCTED WITH 1.8m BATTENS CLOSELY SPACED AND ARRANGED VERTICALLY FROM GROUND LEVEL. GIRDLES SHALL BE STRAPPED TO TREES PRIOR TO CONSTRUCTION AND REMAIN UNTIL COMPLETION. . TREE ROOTS SHALL BE TUNNELLED UNDER, RATHER THAN SEVERED. IF ROOTS

ARE SEVERED THE DAMAGED AREA SHALL BE TREATED WITH A SUITABLE FUNGICIDE. CONTACT RELEVANT COUNCIL ARBORIST FOR FURTHER ADVICE. D. ANY TREE LOPPING REQUIRED SHOULD BE UNDERTAKEN BY AN APPROVED

SOIL

A. TOPSOIL AND SUBSOIL SHALL BE STOCKPILED SEPARATELY.
B. CARE SHALL BE TAKEN TO PREVENT SEDIMENT FROM ENTERING THE STORMWATER SYSTEM. THIS MAY INVOLVE PLACING APPROPRIATE SEDIMENT CONTROLS AROUND STOCKPILES.

C. IF ACID SULPHATE SOILS EXIST IN THE WORKS AREA, ACID SULPHATE SOILS ARE TO MANAGED IN ACCORDANCE WITH AN APPROVED ACID SULPHATE SOIL

CREEK CROSSINGS

A. SILTATION CONTROL MEASURES SHALL BE PLACED DOWNSTREAM OF ANY EXCAVATION WORK.

B. APPROPRIATE SEDIMENT CONTROLS SHALL BE USED TO PREVENT SEDIMENT FROM ENTERING THE CREEK.

C. NO SOIL SHALL BE STOCKPILED WITHIN 5m OF THE CREEK.

REHABILITATION

A. PREDISTURBANCE SOIL PROFILES AND COMPACTION LEVELS SHALL BE B. PREDISTURBANCE VEGETATION PATTERNS SHALL BE RESTORED

A. THE DESIGN AND CONSTRUCTION OF THE WORKS SHALL COMPLY WITH ALL

INDEMNITY - EXISTING SERVICES

NOT WITHSTANDING THAT EXISTING SERVICES MAY OR MAY NOT BE SHOWN ON THESE DRAWINGS, NO RESPONSIBILITY IS TAKEN BY THE ENGINEER OR THE PRINCIPAL FOR THIS INFORMATION WHICH HAS BEEN SUPPLIED BY OTHERS. THI DETAILS ARE PROVIDED FOR INFORMATION ONLY, THE CONTRACTOR SHALL ASCERTAIN THE POSITION OF ALL INDERGROUND SERVICES PRIOR TO EXCAVATION AND SHALL BE RESPONSIBLE FOR THE COST OF REPAIRS TO DAMAGES CAUSED AS A RESULT OF THE WORKS.

ALL ENVIRONMENT PROTECTION MEASURES SHALL BE IMPLEMENTED PRIOR TO COMMENCING ANY CONSTRUCTION WORK INCLUDING CLEARING

ALL SEWER CONSTRUCTION WORK LINDERTAKEN BY THE CONTRACTOR SHALL COMPLY WITH THE REQUIREMENTS O THE OUFFNSLAND WORKPLACE HEALTH AND SAFETY ACT 2011. CONTACT THE DIVISION OF HEALTH & SAFETY FOR PHONE: 1300 369 915

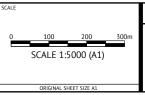
CONTACT "DIAL BEFORE YOU DIG" ON 1100 FOR LOCATION

TRENCH SPOIL NOTE:

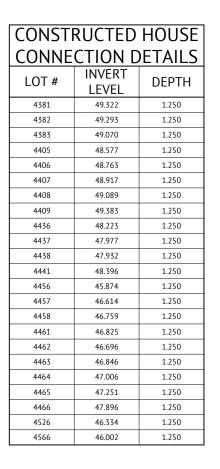
SPOILAGE OF EXCESS MATERIAL TO BE PLACED IN FUTURE FILL AREA AS NOMINATED BY THE SUPERINTENDENT INCLUDING ALL LEVEL ONE COMPACTION REQUIREMENTS AND TESTING IN ACCORDANCE WITH MORRISON GEOTECHNICAL SPECIFICATION AND ALL LOCAL AUTHORITY STANDARDS, AND SHALL BE FREE DRAINING

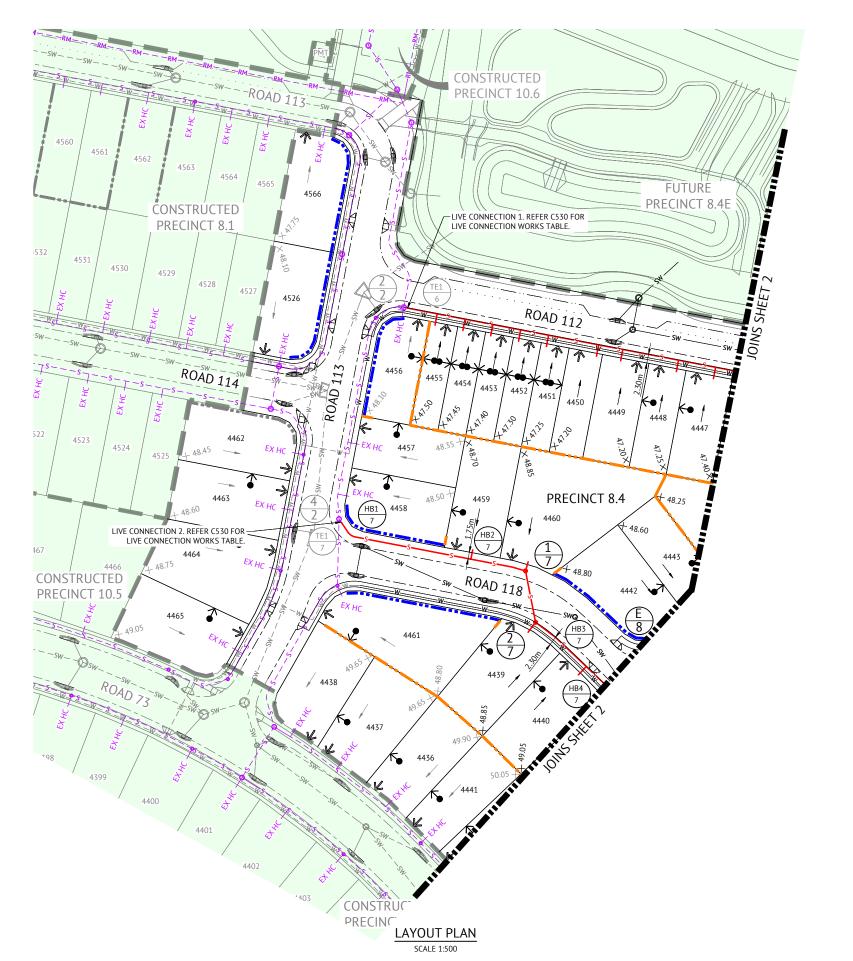
EXCAVATION IN ROCK NOTE:

CONTRACT SHALL INCLUDE TREATING, SIZING CONDITIONING AND PROCESSING ALL TYPES OF ROCK IN ALL EXCAVATIONS. PROCESSING TO BE COMPLETED AS PER MORRISON GEOTECHNICAL REPORTS TO


	SHEET LIST TABLE
SHEET NO.	SHEET TITLE
C500	SEWERAGE LOCALITY PLAN & NOTES
C510	SEWERAGE LAYOUT PLAN - SHEET 1
C511	SEWERAGE LAYOUT PLAN - SHEET 2
C520	SEWERAGE GRAVITY MAIN LONG SECTIONS - SHEET 1
C521	SEWERAGE GRAVITY MAIN LONG SECTIONS - SHEET 2
C522	SEWERAGE GRAVITY MAIN LONG SECTIONS - SHEET 3
C530	SEWERAGE NOTES AND DETAILS

FOR CONSTRUCTION ISSUED FOR CONSTRUCTION


BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, OLD 4000 PH: (07) 3253 2222 Premise WEB: www.premise.com.au


DESIGNED KLYNT KIWANG	
CHECKED ANDREW LANGDON	
PROJECT MANAGER NICK SOMERVILLE	
PROJECT DIRECTOR	Pronj
PATRICK BRADY	RPEQ 7112

MIRVAC QLD PTY LTD **EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT** TEVIOT ROAD, GREENBANK SEWERAGE LOCALITY PLAN & NOTES

MIR-0804

LEGEND - PROPOSED

GRAVITY SEWER Ø100mm PROPERTY CONNECTION. 7.5m OFFSET FROM SIDE BDY WITH DWAY. 1.2m OFFSET FROM SIDE BDY WITHOUT DWAY. TYPICAL U.N.O. MAINTENANCE STRUCTURE PROPOSED MAINTENANCE HOLE OR MAINTENANCE SHAFT NUMBER.
REFER LONG SECTION DRAWINGS FOR HORIZONTAL BEND (3m RADIUS).

38 LOT NUMBER

STORMWATER DRAINAGE

DRINKING WATER MAIN ELECTRICAL (PROPOSED)

ZERO LOT LINE FUTURE DRIVEWAY LOCATION

> PROPOSED CONCRETE SLEEPER PROPOSED CONCRETE PANEL RETAINING WALL

PROPOSED CONCRETE FOOTPATH

& KERB RAMP STAGE BOUNDARY

FALL ARROW

LEGEND - CONSTRUCTED

Ø100mm CONSTRUCTED PROPERTY CONNECTION

SEWER RISING MAIN

MAINTENANCE STRUCTURE

STORMWATER DRAINAGE DRINKING WATER MAIN

> MAINTENANCE HOLE OR MAINTENANCE REFER LONG SECTION DRAWINGS FOR

GRAVITY SEWER

HORIZONTAL BEND (3m RADIUS).

PADMOUNT TRANSFORMER

FOR SEWERAGE RETICULATION NOTES REFER DWG No. C500.

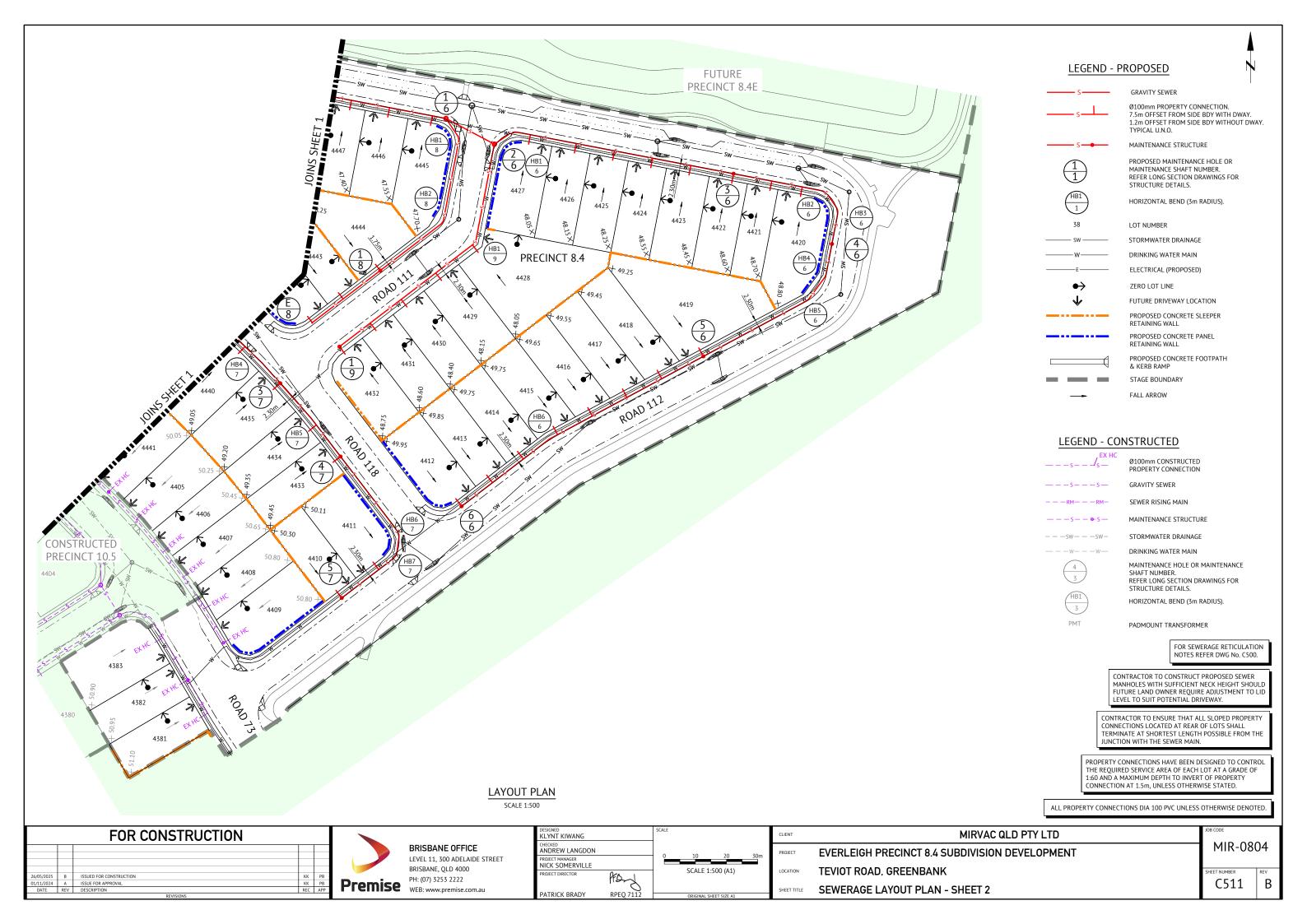
CONTRACTOR TO CONSTRUCT PROPOSED SEWER MANHOLES WITH SUFFICIENT NECK HEIGHT SHOULD FUTURE LAND OWNER REQUIRE ADJUSTMENT TO LIE LEVEL TO SUIT POTENTIAL DRIVEWAY.

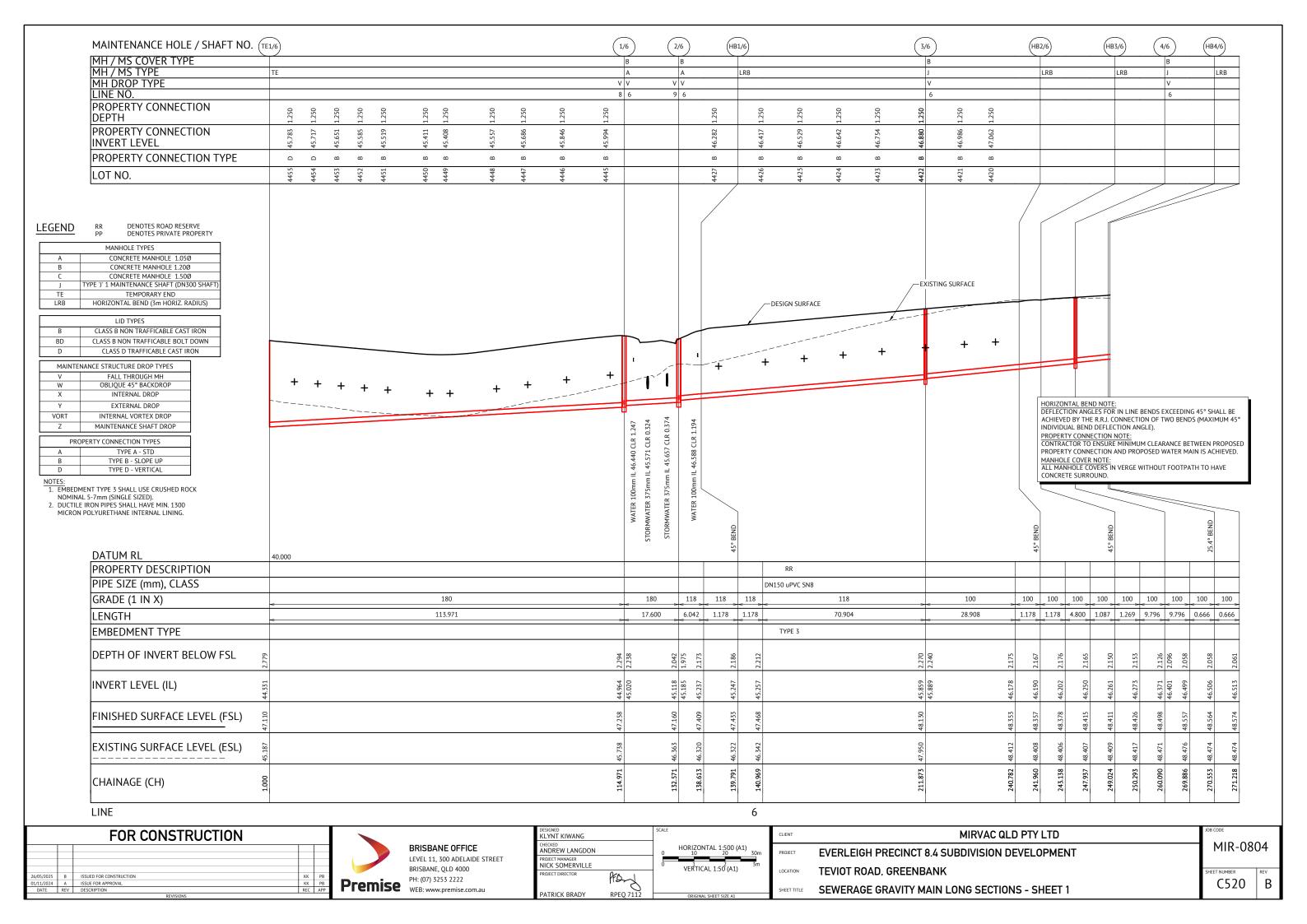
CONTRACTOR TO ENSURE THAT ALL SLOPED PROPERTY CONNECTIONS LOCATED AT REAR OF LOTS SHALL TERMINATE AT SHORTEST LENGTH POSSIBLE FROM TH JUNCTION WITH THE SEWER MAIN.

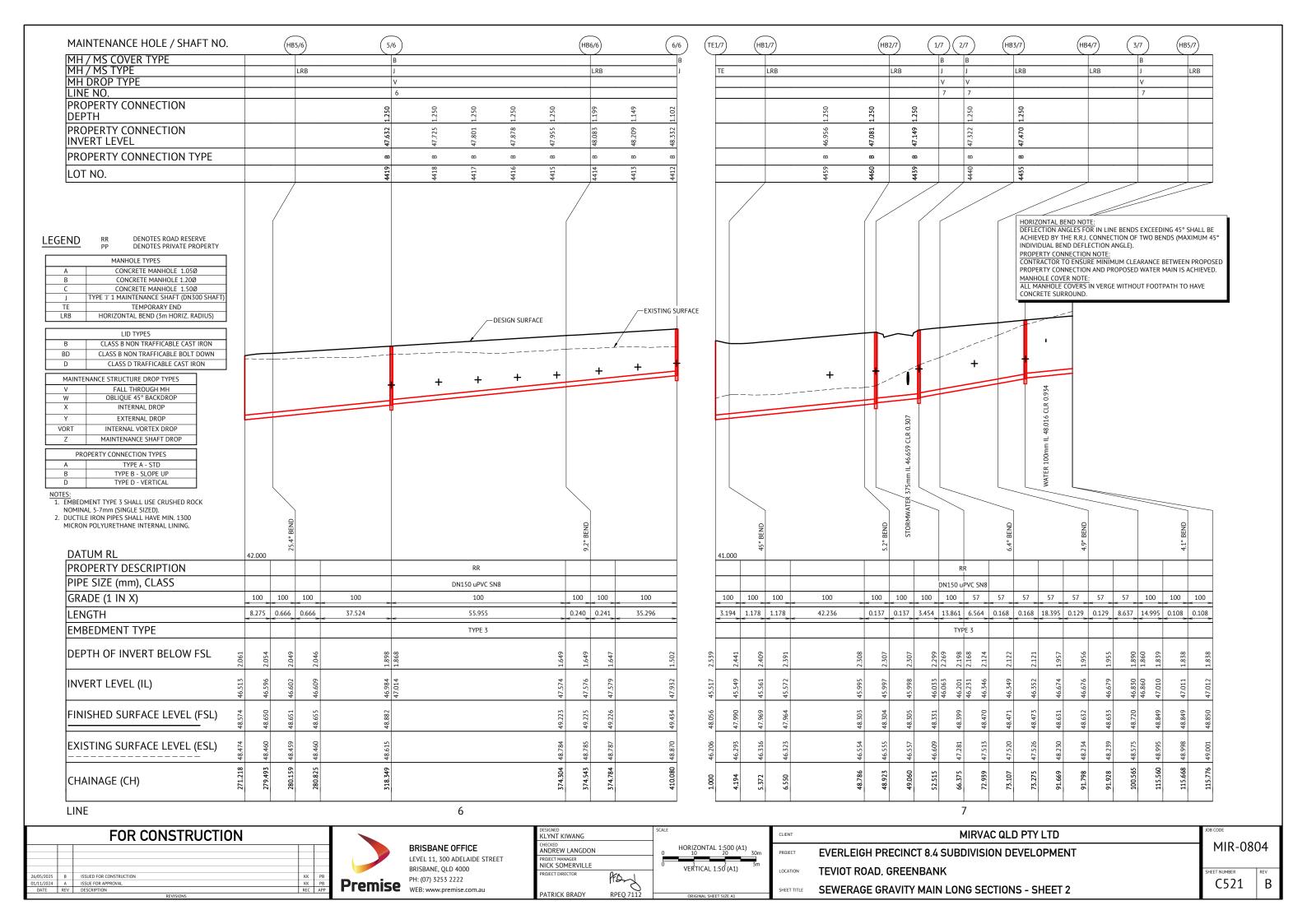
PROPERTY CONNECTIONS HAVE BEEN DESIGNED TO CONTROL THE REQUIRED SERVICE AREA OF EACH LOT AT A GRADE OF 1.60 AND A MAXIMUM DEPTH TO INVERT OF PROPERTY CONNECTION AT 1.5m, UNLESS OTHERWISE STATED.

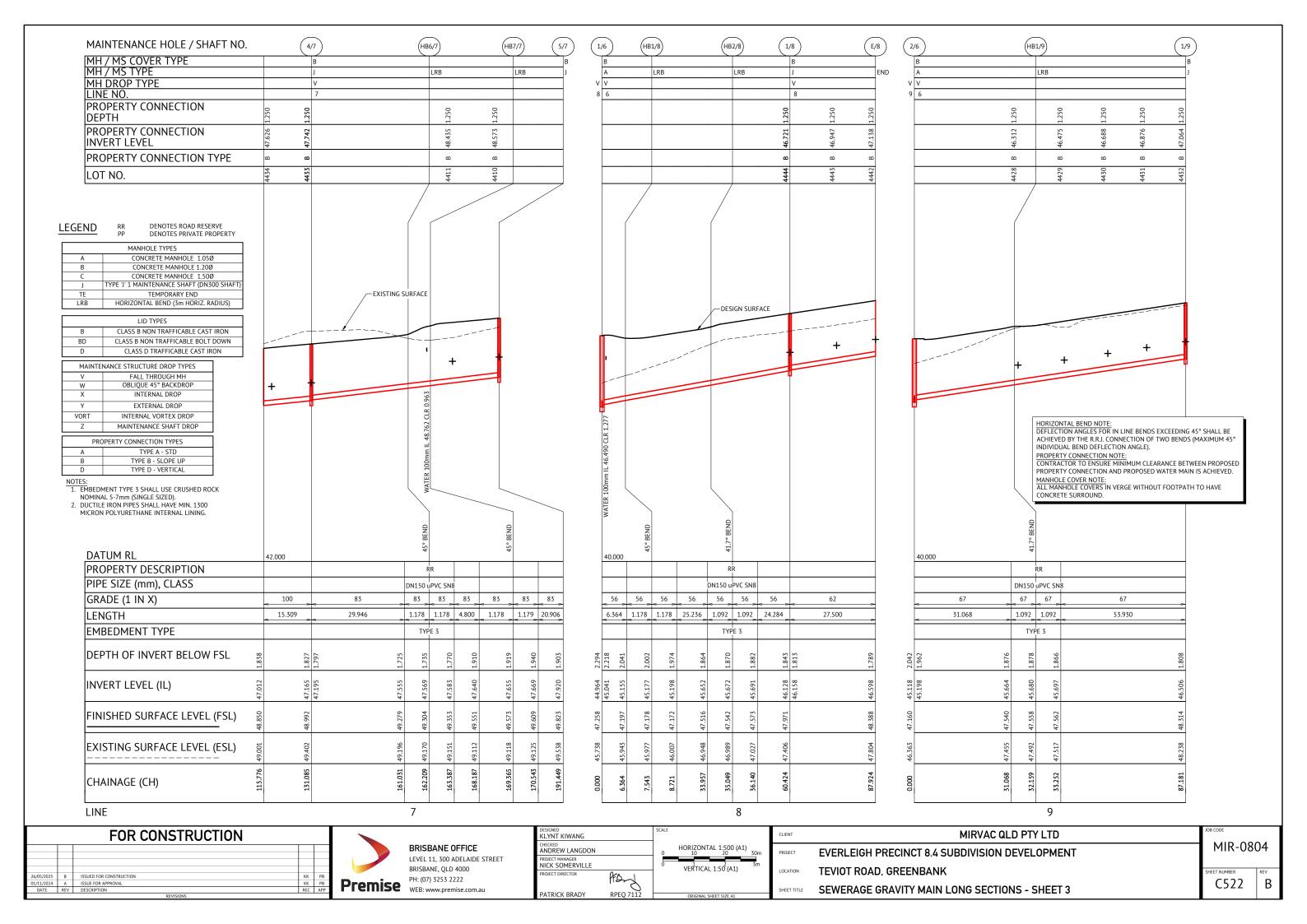
ALL PROPERTY CONNECTIONS DIA 100 PVC UNLESS OTHERWISE DENOTED

FOR CONSTRUCTION 25 B ISSUED FOR CONSTRUCTION 24 A ISSUE FOR APPROVAL REV DESCRIPTION


Premise PH: (07) 5233 2222 WEB: www.premise.com.au


BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 PH: (07) 3253 2222


LYNT KIWANG ANDREW LANGDON NICK SOMERVILLE SCALE 1:500 (A1) PATRICK BRADY


MIRVAC QLD PTY LTD **EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT** TEVIOT ROAD, GREENBANK **SEWERAGE LAYOUT PLAN - SHEET 1**

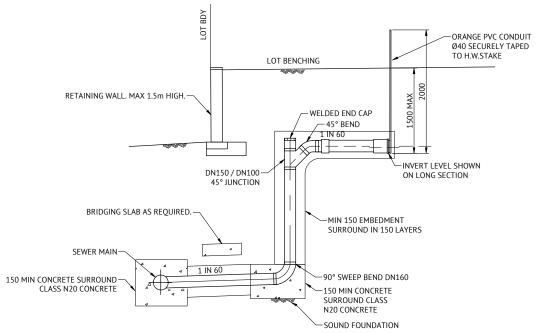
MIR-0804

LIVE SEWER WORKS

No.	DESCRIPTION	DIA. SEWER	MH NO.	MH TYPE	COVER TYPE	LOT NO.	F.S.L.	E.S.L.	I.L.	DEPTH
1(A)	0.5m FROM STUB END CAP TE1/6, CONSTRUCTOR TO LAY NEW LINE 6. AFTER CLEANSING, TESTING AND INSPECTING, NOTIFY AGENCY.	150	TE1/6	END	-	4456	47.110	45.187	44.331	2.779
1(B)	AGENCY TO REMOVE TEMPORARY END CAP ON STUB AND LINE 6 AND MAKE LIVE CONNECTIONS AFTER SUCCESSFUL "ON MAINTENANCE" INSPECTION.									
2(A)	0.5m FROM STUB END CAP TE1/7, CONSTRUCTOR TO LAY NEW LINE 7. AFTER CLEANSING, TESTING AND INSPECTING.	150	TE1/7	END	-	4458	48.056	46.206	45.517	2.539
2(B)	AGENCY TO REMOVE TEMPORARY END CAP ON STUB AND LINE 7 AND MAKE LIVE CONNECTIONS AFTER SUCCESSFUL "ON MAINTENANCE" INSPECTION.									

LEVELS IN THE LIVE SEWER TABLE, ARE DESIGN LEVELS.

7/7/7/7

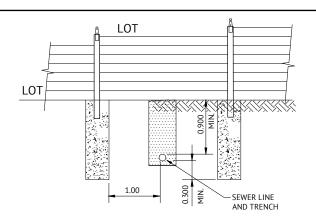

SL81 MESH-

BELOW

CONSULTING ENGINEERS ARE TO CONTACT PRIOR TO COMMENCEMENT OF CONSTRUCTION TO ARRANGE FOR THIS WORK TO BE CARRIED OUT. (EXCAVATION, SAFF-SHORTING AND ASSOCIATED WORK BY CONTRACTOR).

EXCAVATION WORKS CARRIED OUT BY CONTRACTORS AT DEPTH OF 1.5m OR GREATER MUST PROVIDE A "SAFE WORK PLAN" AS PER WORKPLACE HEALTH AND SAFETY LEGISLATION TO SEO-SPS PRIOR TO COMMENCING ANY WORK.

IT IS THE DEVELOPER'S RESPONSIBILITY TO ENSURE ALL LIVE SEWER WORKS ARE COMPLETE BEFORE ALLOWING PRIVATE DRAINAGE TO BE CONNECTED.


EXTENDED PROPERTY CONNECTION UNDER RETAINING WALL - TYPE D (E)

PROVIDE 12mm EPDM RUBBER -

TRIMMER BARS

N12-300 EW EF

50mm COVER

SEWER LINE CROSSING CONCRETE SLEEPER RETAINING WALL

BRIDGING SLAB DETAIL

CONCRETE FOOTPATH WHERE LOCATED WITHIN CONCRETE FOOTPATH, LID MAINTENANCE SURROUND SHALL BE POURED STRUCTURE LID

CONTINUOUS WITH CONCRETE

FOOTPATH

TYPICAL MAINTENANCE STRUCTURE IN CONCRETE FOOTPATH DETAIL

1.000 1.000 0.300*

ELEVATION

REINFORCED N25 CONCRETE SUPPORT AND TRENCH STORMWATER PROVIDE 12mm EPDM RUBBER FPDM RUBBER

GENERAL CONCRETE STORMWATER SUPPORT NOTES:

- SUPPORTS TO BE INSTALLED WHERE STORMWATER PIPE DIAMETER IS EQUAL TO OR GREATER THAN 600mm. 3m MAX DEPTH OF CONCRETE STORMWATER SUPPORT 'D'
- DESIGN BASED ON ACHIEVING 100kPa OF ULTIMATE LIMITSTATE BEARING CAPACITY. TO BE CONFIRMED BY CONTRACTOR DURING

CONCRETE STORMWATER SUPPORT IN ROCK NOTES

- 0.300m* WIDTH UP TO 1050 RCP CLASS 2
- 0.500m* WIDTH BETWEEN 1050 AND 1800 RCP CLASS 2

WHERE BRIDGING STRUCTURE IS LOCATED IN ROCK SUBGRADE. CONTRACTOR SHALL PROVIDE GEOTECHNICAL ADVICE TO

SUPERINTENDENT ADVISING IF SUITABLE SUBGRADE BEARING

CAPACITY CAN BE ACHIEVED TO FACILITATE THIS SUPPORT TYPE.

SECTION CONCRETE STORMWATER SUPPORT TYPICAL DETAIL

3m MAX DEPTH OF CONCRETE

0.125m (EXCLUDING 12mm EPDM RUBBER)

N12-300 SIDE FACE REINFORCEMENT 4 - N12 STARTER BARS WITH 300mm COGGED ENDS-0.200m (EXCLUDING 12mm EPDM RUBBER) -N12 TRIMMER BAR TO MATCH OPENING PROFILE, 3 OF, ENSURING 50mm COVER

SCALE 1:20 0.2m OFFSET TO VERTICAL FACE TYP. RCP TRENCH EXCAVATION - SEWER LINE

SERVICE LINE CROSSING BOULDER OR BLOCK RETAINING WALL BRIDGING SLAB DETAIL

77/27/27/2

BLOCK OR BOULDER

RETAINING WALL.

MAX 1.5m HIGH.

-CLASS N20 CONCRETE

COMPACTED A

TO ENGINEER'S

SPECIFICATION

GRANULAR

MATERIAL

SEWER MAIN TRENCH

SECTION A-A

CONCRETE STORMWATER SUPPORT IN ROCK SUBGRADE DETAIL

SCALE 1:40 ARTHUR ROWSON

ELEVATION

FOR CONSTRUCTION 25 B ISSUED FOR CONSTRUCTION 24 A ISSUE FOR APPROVAL REV DESCRIPTION

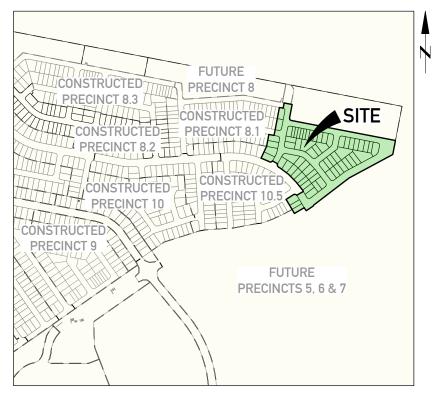
BRISBANE OFFICE

└─SL81 MESH

LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 PH: (07) 3253 2222

SIGNED LYNT KIWANG		SCALE
iecked NDREW LANGDON		
OJECT MANAGER ICK SOMERVILLE		NTS
OJECT DIRECTOR	Pray	
ATRICK BRADY	RPEQ 7112	ORIGINAL SHEET SIZE A1

PROVICE 12mm EPDM RUBBER


11 OF N12 HORIZONTAL BARS EQUALLY SPACED

CLIENT	MIRVAC QLD PTY LTD
PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT
LOCATION	TEVIOT ROAD, GREENBANK
SHEET TITLE	SEWERAGE NOTES AND DETAILS

MIR-0804 C530

EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT

TEVIOT ROAD, GREENBANK FOR MIRVAC QLD PTY LTD WATER RETICULATION

LOCALITY PLAN

REAL PROPERTY DESCRIPTION

LOT 205 & 434

on RP845844

SHEET LIST TABLE		
SHEET NO.	SHEET TITLE	
C600	WATER RETICULATION LOCALITY PLAN & NOTES	
C610	WATER RETICULATION LAYOUT PLAN - SHEET 1	
C611	WATER RETICULATION LAYOUT PLAN- SHEET 2	
C620	WATER LIVE CONNECTION AND TYPICAL DETAILS	

GENERAL NOTES

- ALL WORK AND MATERIALS SHALL BE IN ACCORDANCE WITH CURRENT SOUTH EAST OUEENSLAND WATER SUPPLY CODE SPECIFICATIONS AND STANDARDS.
- LINEESS SPECIFIED OTHERWISE ALL MATERIALS AND WORK SHALL COMPLY WITH THE RELEVANT AUSTRALIAN STANDARDS.
- ADOPT LIP OF KERB OR SHOULDER OF ROAD AS PERMANENT LEVEL COVER OF MAIN FROM PERMANENT LEVEL TO BE AS SHOWN IN SEO-WAT-1200-2
- CONDUITS TO BE INSTALLED IN ACCORDANCE WITH THE STANDARD
- ALL MATERIALS USED IN THE WORKS SHALL COMPLY WITH SEQ-SP's ACCEPTED PRODUCTS AND MATERIALS LIST OR BE APPROPRIATELY SHOWN, LISTED AND DEFINED IN THE ENGINEERING SUBMISSION SO THAT THE ALTERNATIVE PRODUCT OR MATERIAL CAN BE ASSESSED AND IF APPROPRIATE, APPROVED BY SEO-SP's
- ALL CONCRETE FOOTPATHS TO BE CLEAR OF WATER MAINS. WHERE
- CONSTRUCTION OF THE WATER RETICULATION WORK SHOWN ON THIS DRAWING MUST BE SUPERVISED BY AN ENGINEER WHO HAS RPEQ REGISTRATION. WORKS NOT COMPLYING WITH THIS REQUIREMENT WILL NOT BE PERMITTED TO CONNECT TO THE
- ALL WATER CONSTRUCTION WORK UNDERTAKEN BY THE CONTRACTOR SHALL COMPLY WITH THE REQUIREMENTS OF THE OLIFENSI AND WORK HEALTH AND SAFETY ACT 2011 CONTACT THE DIVISION OF WORKPLACE HEALTH & SAFETY FOR INFORMATION.
- PHONE: 1300 362 128.

 10. CONSTRUCT THRUST BLOCKS ON ALL BENDS, TEES, TAPERS AND DEAD
- ENDS IN ACCORDANCE WITH SEQ-WAT-1205-1, AND SEQ-WAT-1206-1.

 11. CONSTRUCT TRENCHES IN ACCORDANCE WITH SEQ-WAT-1200-2, PIPE EMBEDMENT TO SEQ-WAT-1201-1 (TYPE C SUPPORT) AND ROAD CROSSINGS TO SEQ-WAT-1204-1 AND LCC STANDARDS.
- INSTALL SCOURS IN ACCORDANCE WITH SEO-WAT-1307-3 13. INSTALL DETECTABLE MARKER TAPE ON ALL WATER MAINS AND
- PROPERTY SERVICES.
- 14. INSTALL HYDRANTS IN ACCORDANCE WITH SEO-WAT-1302-1.
- 15. INSTALL PAVEMENT MARKERS IN ACCORDANCE WITH
- 16. WATER SERVICE CONNECTIONS INCLUSIVE OF WATER METER BOXES. ARE TO BE INSTALLED IN ACCORDANCE WITH STANDARD DRAWINGS SEO-WAT-1110-1 & SEO-WAT-1110-2 AND OTHER RELEVANT
- STANDARD DRAWINGS FROM SEQ DESIGN AND CONSTRUCTION CODE. 17 TERMINATE ALL WATER SERVICES AFTER INSTALLATION OF THE BALL VALVE (PRIOR TO THE WATER METER). THE APPLICANT IS NOT REQUIRED TO MAKE AN APPLICATION TO COUNCIL FOR THE
- PROVISION OF A WATER METER AT THIS TIME. 18. THE POLYETHYLENE SERVICE LINE MUST COMPLY WITH AS/NZ4130 SERIES 1 DN20 PN16.
- 19. TAPPING BANDS MUST BE USED WHEN PROVIDING CONNECTION, UNLESS OTHERWISE APPROVED BY COUNCIL
- 20. PROPERTY SERVICES WITHIN ANY FOOTWAY SHALL BE POSITIONED AT 90+/-5 DEGREES TO THE WATER MAIN OR KERB, WHERE REQUIRED TO CROSS THE ROAD CARRIAGEWAY, PROPERTY SERVICES SHALL BE LOCATED WITHIN THE SERVICE DUCTS (CONDUITS) POSITIONED AT BOUNDARY TO SIDE BOUNDARY AND EXTENDING BEHIND EACH KERB IN ACCORDANCE WITH CLAUSE 5.11.3 OF THE SOUTH EAST

- QUEENSLAND WATER SUPPLY AND SEWERAGE DESIGN AND CONSTRUCTION CODE. THE CONDUIT SHALL HAVE A MAXIMUM LENGTH OF 25m AND EXTEND 300mm BEYOND THE BACK OF THE KERB OR CONCRETE/PAVED AREA.
- 21. WHERE PRACTICABLE, PROPERTY SERVICE CONNECTION POINTS MUST BE LOCATED 300mm FROM THE RESIDENTIAL PROPERTY SIDE BOUNDARY ON THE OPPOSITE SIDE OF THE ALLOTMENT TO THE ELECTRICAL SERVICE PILLAR-BOX. SERVICES MUST BE LOCATED AT LEAST 1.0m FROM ALL ELECTRICAL SOURCES AND CLEAR OF EXISTING OR FUTURE DRIVEWAYS. PROPERTY SERVICES LAID PARALLEL TO THE FOOTPATH AND/OR PROPERTY BOUNDARY ARE NOT PERMITTED (SEQ CODE CLAUSE 5.11.5). TERMINATE ALL WATER SERVICES AFTER INSTALLATION OF THE BALL VALVE (PRIOR TO THE WATER METER)

VEGETATION PROTECTION

- TREES LOCATED ALONG THE FOOTPATH SHALL BE, TRANSPLANTED PRIOR TO CONSTRUCTION, OR REPLACED IF DESTROYED.
- WHEN WORKING WITHIN 4m OF TREES, RUBBER OR HARDWOOD GIRDLES SHALL BE CONSTRUCTED WITH 1.8m BATTENS CLOSELY SPACED AND ARRANGED VERTICALLY FROM GROUND LEVEL. GIRDLES SHALL BE STRAPPED TO TREES PRIOR TO CONSTRUCTION AND REMAIN UNTIL COMPLETION.
- TREE ROOTS SHALL BE TUNNELLED UNDER, RATHER THAN SEVERED, IE ROOTS ARE SEVERED THE DAMAGED AREA SHALL BE TREATED WITH A SUITABLE FUNGICIDE. CONTACT RELEVANT COUNCIL ARBORIST FOR FURTHER ADVICE.
- ANY TREE LOPPING REQUIRED SHOULD BE UNDERTAKEN BY AN APPROVED ARBORIST

- TOPSOIL AND SUBSOIL SHALL BE STOCKPILED SEPARATELY.
- CARE SHALL BE TAKEN TO PREVENT SEDIMENT FROM ENTERING THE STORMWATER SYSTEM. THIS MAY INVOLVE PLACING APPROPRIATE SEDIMENT CONTROLS AROUND STOCKPILES.

CREEK CROSSINGS

- SILTATION CONTROL MEASURES SHALL BE PLACED DOWNSTREAM OF
- APPROPRIATE SEDIMENT CONTROLS SHALL BE USED TO PREVENT SEDIMENT FROM ENTERING THE CREEK.
- NO SOIL SHALL BE STOCKPILED WITHIN 5m OF THE CREEK.

REHABILITATION

- PRE-DISTURBANCE SOIL PROFILES AND COMPACTION LEVELS SHALL
- PRE-DISTURBANCE VEGETATION PATTERNS SHALL BE RESTORED, ALL DISTURBED AREAS ASSOCIATED WITH CONSTRUCTION SHALL BE REHABILITATED, HEAVILY COMPACTED AREAS SHOULD BE RIPPED PRIOR TO TREATMENT
- ALL DISTURBED AREAS ARE TO BE LEFT IN STABLE CONDITION.
- ALL PLANTING/RE-VEGETATION WILL NEED TO BE MAINTAINED

CONSTRUCTION REQUIREMENTS

- LIVE WATER CONNECTIONS TO BE CARRIED OUT BY LOGAN WATER AS PER THE LIVE CONNECTION REQUEST UNLESS AGREED OTHERWISE WITH LOGAN WATER.
- PRIOR TO ANY EXCAVATION. CONTRACTOR IS TO LOCATE ACTUAL POSITIONS OF PUBLIC SERVICE UTILITIES BY POT HOLES.
- UPON COMPLETION OF ALL WORKS, CONTRACTORS SHALL SUPPLY THE SUPERVISING RPEO DETAILED "AS CONSTRUCTED" INFORMATION OF THE WORK. "AS CONSTRUCTED" INFORMATION SHALL COMPLY WITH CURRENT SEQ CODE OR LOCAL AUTHORITY STANDARDS FOR PLAN AND DIGITAL INFORMATION.
- CONTRACTOR IS TO BE RESPONSIBLE FOR ARRANGING ALL LOGAN WATER CONNECTIONS AND PAYMENTS OF CONNECTION FEES

TRENCH SPOIL NOTE:

SPOILAGE OF EXCESS MATERIAL TO BE PLACED IN FUTURE FILL AREA AS NOMINATED BY THE SUPERINTENDENT INCLUDING ALL LEVEL ONE COMPACTION REQUIREMENTS AND TESTING IN ACCORDANCE WITH MORRISON GEOTECHNICAL SPECIFICATION AND ALL LOCAL AUTHORITY STANDARDS, AND SHALL BE FREE DRAINING

EXCAVATION IN ROCK NOTE:

CONTRACT SHALL INCLUDE TREATING, SIZING CONDITIONING AND PROCESSING ALL TYPES OF ROCK IN ALL EXCAVATIONS, PROCESSING TO BE COMPLETED AS PER MORRISON GEOTECHNICAL REPORTS TO ENSURE LEVEL 1 IS ACHIEVED.

INDEMNITY - EXISTING SERVICES

NOT WITHSTANDING THAT EXISTING SERVICES MAY OR MAY NOT BE SHOWN ON THESE DRAWINGS, NO RESPONSIBILITY IS TAKEN BY THE ENGINEER OR THE PRINCIPAL FOR THIS INFORMATION WHICH HAS BEEN SUPPLIED BY OTHERS. THE DETAILS ARE PROVIDED FOR INFORMATION ONLY. THE CONTRACTOR SHALL ASCERTAIN THE POSITION OF ALL UNDERGROUND SERVICES PRIOR TO EXCAVATION AND SHALL BE RESPONSIBLE FOR THE COST OF REPAIRS TO DAMAGES CAUSED AS A RESULT OF THE WORKS.

RPEQ CERTIFICATION

THE CONSTRUCTION OF THE WATER RETICULATION WORK SHOWN ON THIS DRAWING MUST BE SUPERVISED BY AN ENGINEER WHO HAS RPEO REGISTRATION, WORKS NOT COMPLYING WITH THIS REQUIREMENT WILL NOT BE PERMITTED TO CONNECT INTO LOGAN WATER RETICULATION SYSTEM. ALL RPEQ CERTIFIED DRAWINGS COMPLY WITH SE CODE AND LOGAN WATER REQUIREMENTS

INSPECTION REQUIREMENTS

PRIOR TO COMMENCEMENT OF WORKS CONTACT PREMISE (07) 3253 2222 AND LOGAN WATER TO CONFIRM INSPECTIO REQUIREMENTS INCLUDING LIVE CONNECTIONS.

MINIMUM 48 HOURS NOTICE IS REQUIRED

INSPECTIONS ARE REQUIRED TO BE ORGANIZED WITH PREMISE AND LOGAN WATER. ANY COSTS ASSOCIATED WITH ENGAGING LOGAN WATER TO UNDERTAKE INSPECTIONS OUTSIDE OF THE FEE PAID SHALL BE BORNE BY THE

ALL ENVIRONMENT PROTECTION MEASURES SHALL BE IMPLEMENTED PRIOR TO COMMENCING ANY CONSTRUCTION WORK, INCLUDING CLEARING

ALL WATER CONSTRUCTION WORK UNDERTAKEN BY THE CONTRACTOR SHALL COMPLY WITH THE REQUIREMENTS OF THE OUEENSLAND WORK HEALTH AND SAFETY ACT 2011. CONTACT THE DIVISION OF WORKPLACE HEALTH & SAFETY FOR INFORMATION PHONE: 1300 362 128

SEO CODE STD DRAWING SCHEDULE

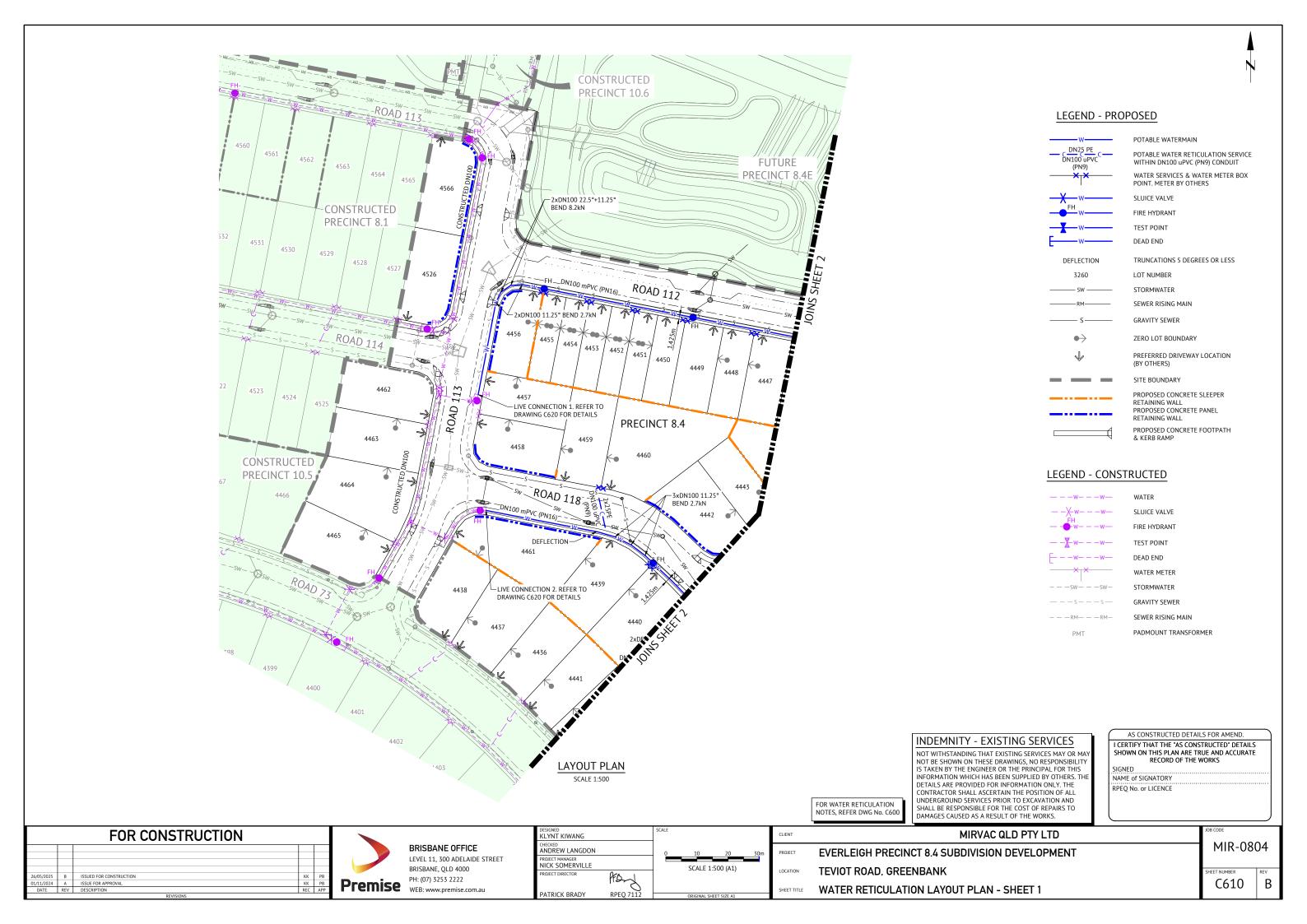
SOIL CLASSIFICATION SFO-WAT-1200-1 EMBEDMENT AND TRENCH FILL THRUST BLOCK DETAILS SFO-WAT-1205-1 VALVE THRUST BLOCKS SEO-WAT-1206-1 IDENTIFICATION MARKERS SEO-WAT-1300-1.2

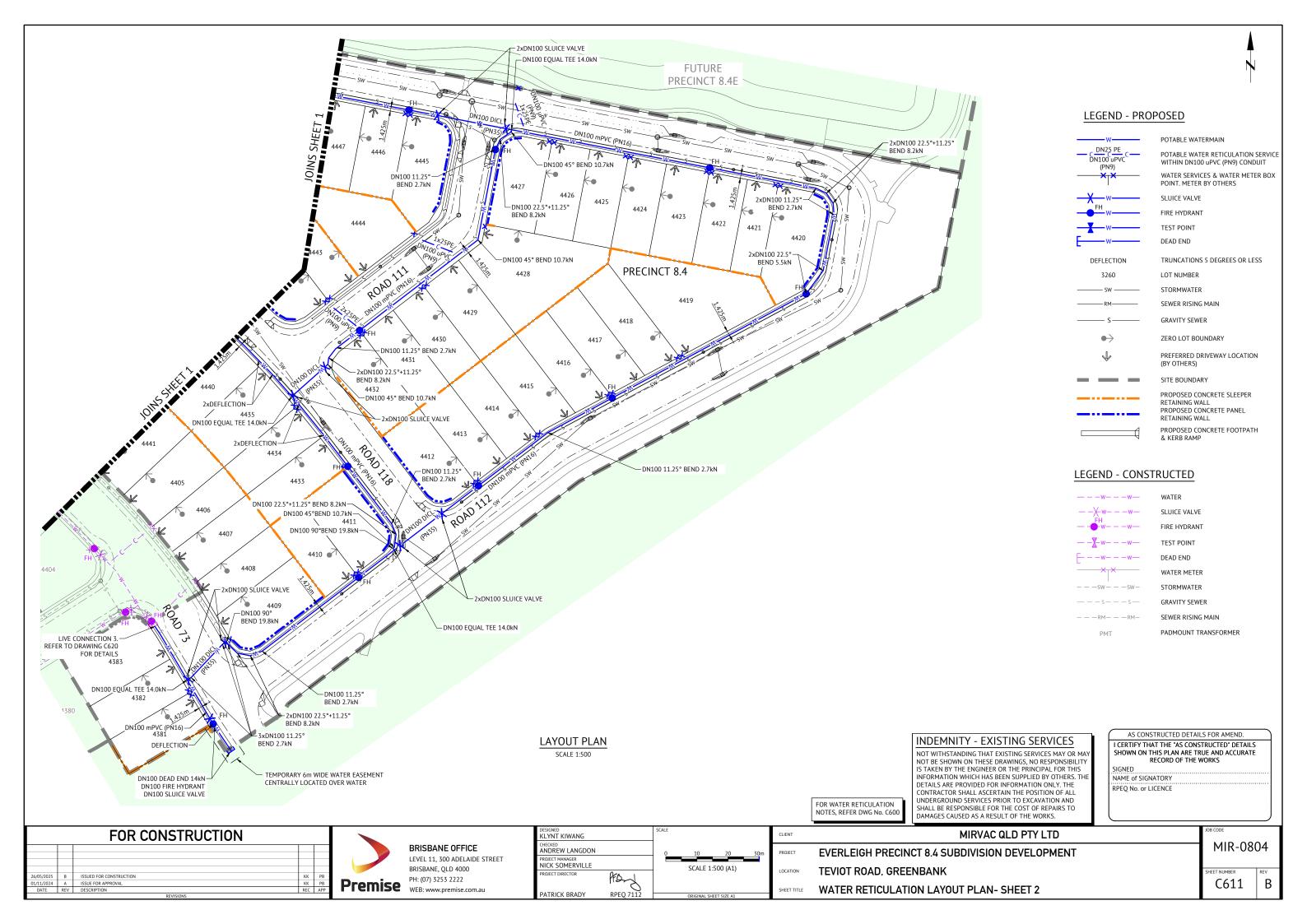
Premise

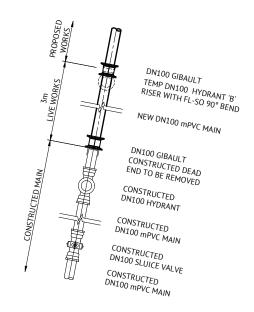
FOR CONSTRUCTION ISSUED FOR CONSTRUCTION

BRISBANE OFFICE

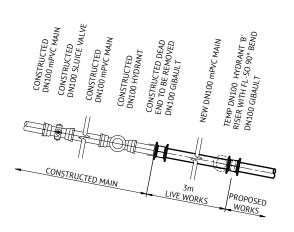
LEVEL 11, 300 ADELAIDE STREET BRISBANE, OLD 4000 PH: (07) 3253 2222

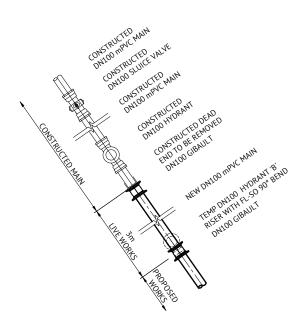

DESIGNED KLYNT KIWANG	
CHECKED ANDREW LANGDON	
PROJECT MANAGER NICK SOMERVILLE	
PROJECT DIRECTOR	PFD
PATRICK BRADY	RPEQ 7112

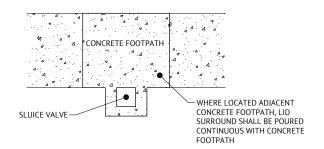

ALE			
0	150	300	450m
	SCALE 1:	7500 (A1)	
	ORIGINAL S	HEET SIZE A1	


MIRVAC QLD PTY LTD **EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT** TEVIOT ROAD, GREENBANK

WATER RETICULATION LOCALITY PLAN & NOTES


MIR-0804




LIVE CONNECTION 1 DETAIL SCALE 1:25

LIVE CONNECTION 2 DETAIL SCALE 1:25

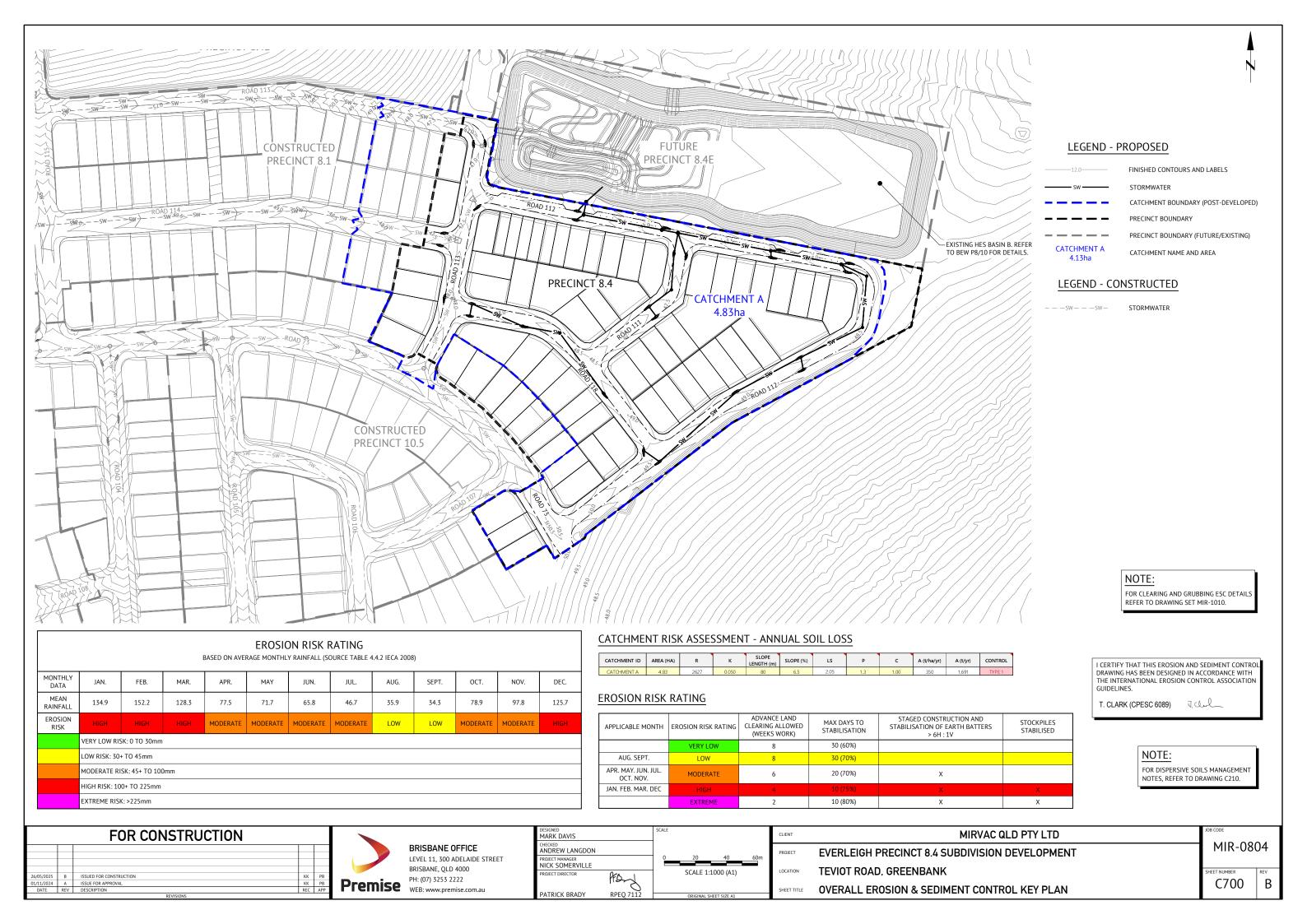
LIVE CONNECTION 3 DETAIL SCALE 1:25

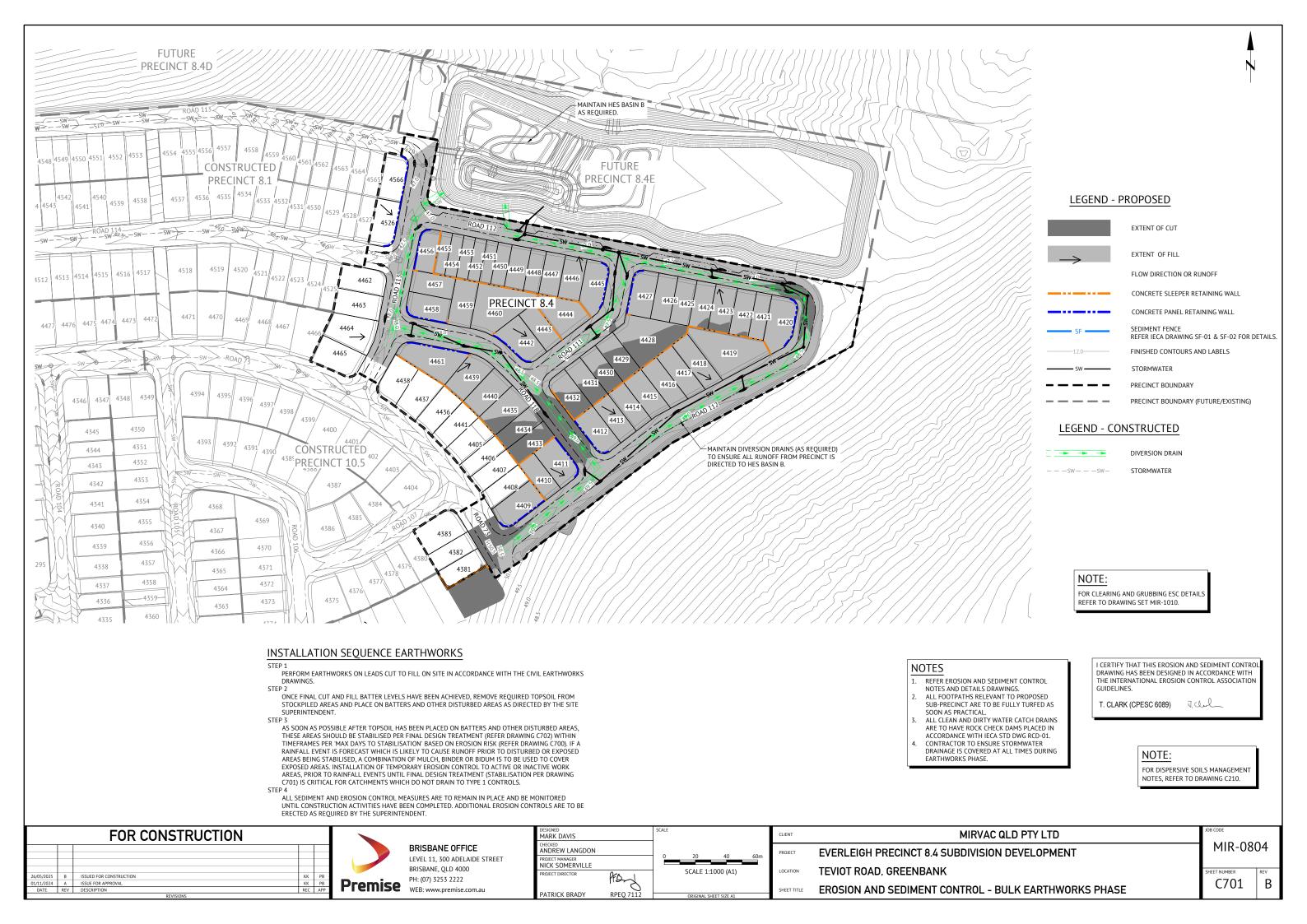
TYPICAL SLUICE VALVE ADJACENT CONCRETE FOOTPATH DETAIL

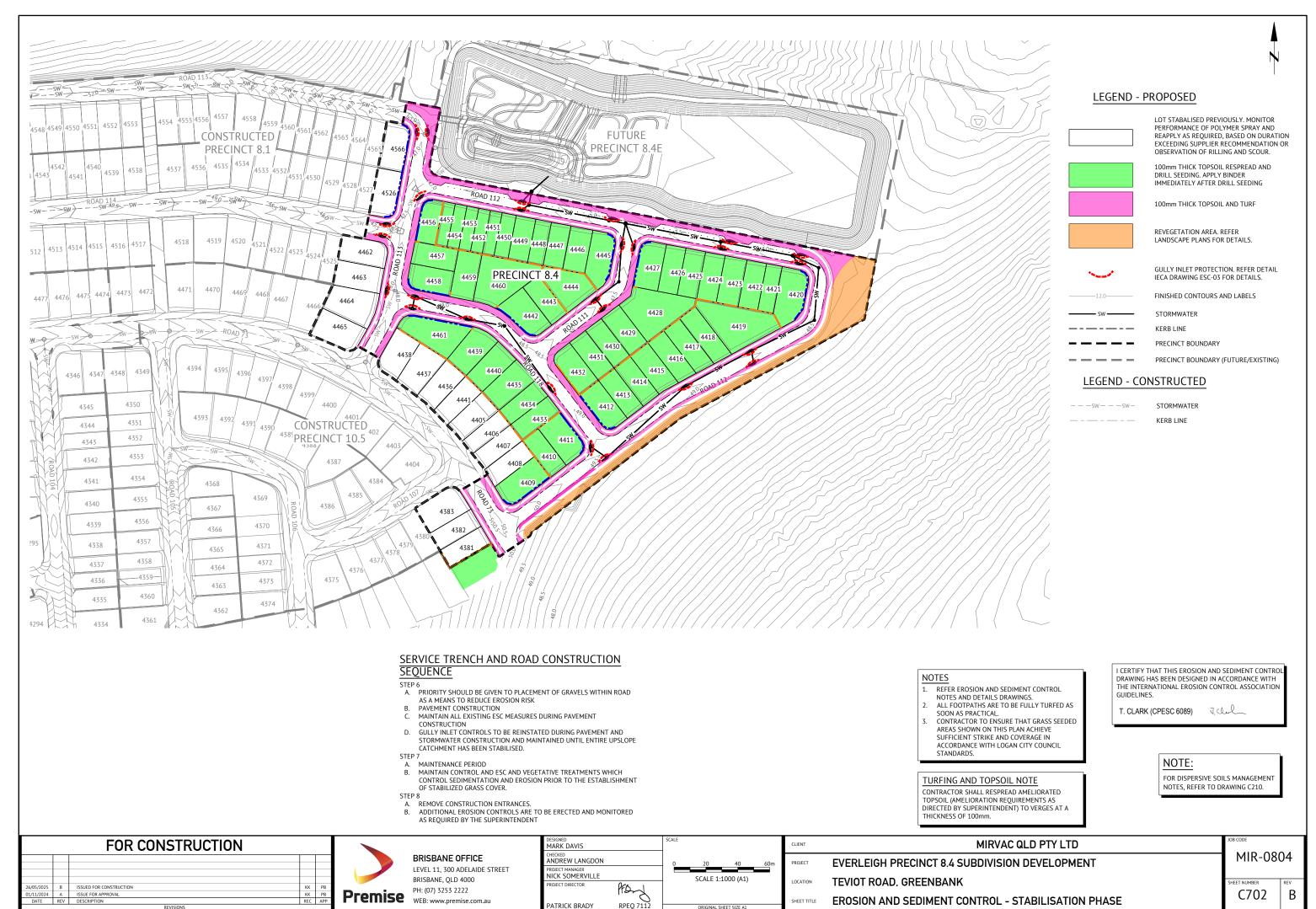
- LIVE CONNECTIONS BY LOGAN WATER
 LIVE CONNECTION IN ACCORDANCE WITH SEQ-WAT-1303-1
 THRUST BLOCKS NOT SHOWN FOR CLARITY.
 PRE-CHLORINATION FITTINGS AS REQUIRED.

AS CONSTRUCTED DETAILS FOR AMEND.	_
I CERTIFY THAT THE "AS CONSTRUCTED" DETAILS	
SHOWN ON THIS PLAN ARE TRUE AND ACCURATE	
RECORD OF THE WORKS	
SIGNED DATE:	
NAME of SIGNATORY	
RPEQ No. or LICENCE	
COMPANY NAME	
START DATE	

		FOR CONSTRUCTION		
26/05/2025	В	ISSUED FOR CONSTRUCTION	KK	PB
01/11/2024	Α	ISSUE FOR APPROVAL	KK	PB
DATE	REV	DESCRIPTION	REC	APP




DESIGNED		SCALE				
KLYNT KIWANG						1
CHECKED						H
ANDREW LANGDON		0	10	20	30m	1
PROJECT MANAGER						1
NICK SOMERVILLE			SCALE 1	500 (A1)		1
PROJECT DIRECTOR	OCA 1		30,122 1	.500 (7.12)		1
	112					1
	0					
PATRICK BRADY	RPEQ 7112		ORIGINAL SH	EET SIZE A1		


CLIENT	MIRVAC QLD PTY LTD
PROJECT	EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT
LOCATION	TEVIOT ROAD, GREENBANK
SHEET TITLE	WATER LIVE CONNECTION AND TYPICAL DETAILS

MIR-0804

C620 В

PATRICK BRADY

RPEQ 7112

C702

EROSION AND SEDIMENT CONTROL - STABILISATION PHASE

EROSION & SEDIMENT CONTROL NOTES

- 1. LOCATION & LEVELS OF ALL EXISTING SERVICES TO BE CONFIRMED ON SITE BY CONTRACTOR PRIOR TO THE COMMENCEMENT OF CONSTRUCTION.
- REFER EARTHWORKS DRAWINGS FOR ADDITIONAL NOTES.
 ALL TRENCHES, FOOTPATH EXCAVATIONS & STOCKPILES TO BE PROTECTED BY TEMPORARY SEDIMENT FENCES UNTIL 80% GRASS COVERAGE IS ACHIEVED TO DISTURBED AREAS.
- 4. EVERY PRECAUTION IS TO BE TAKEN TO PREVENT THE TRANSPORT OF SILT INTO THE NEWLY LAID STORMWATER PIPES THAT ARE CONNECTED TO THE DOWNSTREAM PIPE SYSTEMS, AND ANY EXISTING OPEN CHANNELS
- THESE NOTES SHALL BE READ IN CONJUNCTION WITH THE REQUIREMENTS OF THE CONTRACT DOCUMENTS
- THE EROSION AND SEDIMENT CONTROL WORKS SHALL COMPLY WITH THE REQUIREMENTS OF THE
- LOCAL AUTHORITIES EROSION AND SEDIMENT CONTROL STANDARDS.
 THE CONTRACTOR SHALL TAKE ALL REASONABLE AND PRACTICABLE MEASURES TO:
- ALLOW STORMWATER TO PASS THROUGH THE SITE IN A CONTROLLED MANNER AND AT NON EROSIVE FLOW VELOCITIES;
- MINIMISE SOIL EROSION FROM WATER AND WIND; MINIMISE ADVERSE EFFECTS OF SEDIMENT RUN-OFF;
- MINIMISE OR PREVENT ENVIRONMENTAL HARM ASSOCIATED WITH DISCHARGES FROM THE SITE (E.G. THE EFFECTS OF SEDIMENTATION ON THE ENVIRONMENTAL VALUES OF RECEIVING WATERS); AND
- ENSURE THAT THE VALUE AND USE OF RESIDENTIAL PROPERTIES ADJACENT TO THE DEVELOPMENT (SUCH AS DRAINAGE AND ROADS) ARE NOT DIMINISHED AS A RESULT OF THE MIGRATION OF
- SEDIMENT FROM THE DEVELOPMENT.
 THE CONTRACTOR SHALL APPOINT AN APPROPRIATELY EXPERIENCED PERSON TO BE MADE
- RESPONSIBLE FOR IMPLEMENTATION OF THE ESC.
 ALL ESC MEASURES SHALL BE INSPECTED:

- AT LEAST DAILY (WHEN WORK IS OCCURRING ON SITE). AT LEAST WEEKLY (WHEN WORK IS NOT OCCURRING ON SITE).
- WITHIN 24 HOURS OF EXPECTED RAINFALL.
- WITHIN 18 HOURS OF RAINFALL OCCURRING
- MAINTENANCE OF ESC MEASURES SHALL OCCUR TO ENSURE THEY ARE OPERATING EFFICIENTLY AND IN ACCORDANCE WITH THE FOLLOWING SCHEDULE:

ESC MEASURES	MAINTENANCE TRIGGER	TIME FRAME FOR UNDERTAKING MAINTENANCE
ESC MEASURES	WHEN SETTLED SEDIMENT VOLUME EXCEEDS 25% OF THE CAPACITY OF THE ESC MEASURE	BY THE END OF THE DAY

- INSTALL DIVERSION CATCH DRAINS UPSTREAM OF, AND SILT FENCE DOWNSTREAM OF, STOCKPILES.
- STOCKPILES ARE TO BE LOCATED AWAY FROM EROSION HAZARD AREAS SUCH AS DRAINAGE LINES AND STEEP SLOPES.
- 9. STOCKPILES ARE TO BE PROTECTED FROM EROSION BY THE WIND.
 10. ADEQUATE SUPPLIES OF EMERGENCY MAINTENANCE MATERIALS, INCLUDING (BUT NOT LIMITED TO) TIE WIRE, STAKES, FILTER CLOTH, WIRE MESH AND CLEAN GRAVEL SHOULD BE AVAILABLE ON-SITE.
- 11. FSC MAINTENANCE ACTIVITIES ARE TO BE RECORDED IN AN ON-SITE REGISTER. THE REGISTER IS TO BE MAINTAINED FOR THE DURATION OF THE WORKS AND IS TO BE MADE AVAILABLE TO THE SUPERINTENDENT.
- 12. DISTURBED AREA ARE TO BE STABILISED AS SOON AS POSSIBLE ON COMPLETION OF BULK EARTHWORKS, LOTS TO BE STABILISED FOLLOWING RESPREADING OF TOPSOIL
- 13. SUPPLEMENTARY ESC MEASURES SHALL BE DIRECTED BY THE SUPERINTENDENT.

MAINTENANCE

- INSPECT ALL CATCH DRAINS AT LEAST WEEKLY AND AFTER RUNOFF-PRODUCING STORM
- EVENTS AND REPAIR ANY SLUMPS, BANK DAMAGE. OR LOSS OF FREEBOARD.
 CLOSELY INSPECT THE OUTER EDGES OF THE ROCK PROTECTION. ENSURE WATER
- ENTRY INTO THE ROCK -LINED AREA IS NOT CAUSING EROSION ALONG THE EDGE OF THE ROCK PROTECTION.
- CAREFULLY CHECK THE STABILITY OF THE ROCK LOOKING FOR INDICATIONS OF PIPING, SCOUR HOLES, OR BANK FAILURES.
- REPLACE OR REPOSITION THE SURFACE ROCK SUCH THAT THE DRAIN FUNCTIONS AS
- REQUIRED AND THE DRAIN'S REQUIRED HYDRAULIC CAPACITY IS NOT REDUCED.
 REPLACE ANY DISPLACED ROCK WITH ROCK OF SIGNIFICANTLY (MINIMUM 110%)
- LARGER SIZE THAN THE DISPLACED ROCK.
 ENSURE SEDIMENT IS NOT PARTIALLY BLOCKING THE DRAIN. WHERE NECESSARY,
- REMOVE ANY DEPOSITED MATERIAL TO ALLOW FREE DRAINAGE.
 DISPOSE OD ANY SEDIMENT OF FILL IN A MANNER THAT WILL NOT CREATE AN EROSION
- OR POLITITION HAZARD

ROLES AND RESPONSIBILITIES

ROLE	RESPONSIBILITY
PROJECT MANAGER	OVERALL RESPONSIBILITY OF ESC IMPLEMENTATION
	 NOTIFY THE ENVIRONMENTAL MANAGER IMMEDIATELY OF ANY NON-COMPLIANCE WITH ESCP
	 ENSURE THE PROMPT IMPLEMENTATION OF MEASURES TO MITIGATE EROSION AND SEDIMENT GENERATION
SITE SUPERVISOR / FOREMEN	MONITOR DAILY RAINFALL
	 NOTIFY ENVIRONMENTAL ADVISOR/CONSULTANT WHEN RUNOFF GENERATING RAINFALL OCCURS IN THE PREVIOUS 24 HOURS
	 MAINTAIN CURRENT RECORDS OF RAINFALL, STORAGE VOLUMES, WATER QUALITY, TREATMENT PRACTICES, DISCHARGE VOLUMES (AS APPROPRIATE)
	• INSTALLATION AND MAINTENANCE OF ESC
ENVIRONMENTAL MANAGER	PROVIDE DESIGN INFORMATION AS REQUIRED
	 CONDUCT IN-SITU MONITORING (AS REQUIRED)
	 COLLECT AND SUBMIT SAMPLES TO LABORATORY (AS REQUIRED)
	 COLLATE RESULTS AND PREPARE REPORTS (AS REQUIRED)
	 CONDUCT SITE INSPECTIONS AN AUDITS (AS REQUIRED)
	• INSPECT ESC INSTALLATION AND MAINTENANCE
	• INSPECT OFFSITE IMPACTS AND MANAGEMENT
	 PROVIDE ADVICE REGARDING ESC SITE IMPROVEMENT (AS REQUIRED)
ALL PERSONNEL	 REPORT ANY DAMAGE TO ESC DEVICES AND ANY POTENTIAL OR ACTUAL ENVIRONMENTAL HARM IN LINE WITH DUTY TO NOTIFY UNDER THE REQUIREMENTS OF THE ENVIRONMENTAL PROTECTION ACT 1994

CORRECTIVE AND PREVENTATIVE ACTION

AN ENVIRONMENTAL INCIDENT WITH RESPECT TO THE ESCP IS DEFINED AS ANY OCCURRENCE WHERE SEDIMENT IS RELEASED FROM THE SITE, WHETHER CONTROLLED OR UNCONTROLLED, OR WHERE STORM WATER IS RELEASED (CONTROLLED) FROM SITE WHICH DOES NOT MEET THE WATER QUALITY REQUIREMENTS.

ALL INCIDENTS AND NON-CONFORMANCES ARE TO BE REPORTED, INVESTIGATED AND CORRECTED IN ACCORDANCE WITH THE ESCP TO ENSURE EFFECTIVE SOIL AND WATER QUALITY MANAGEMENT PRACTICES AT ALL TIMES.

BEST PRACTICE SITE MANAGEMENT REQUIRES ALL ESC MEASURES TO BE INSPECTED BY THE CONTRACTORS NOMINATED REPRESENTATIVE AT LEAST DAILY WHEN RAIN IS OCCURRING, WITHIN 24 HOURS PRIOR TO EXPECTED RAINFALL, AND WITHIN 18 HOURS OF A RAINFALL EVENT OF SUFFICIENT INTENSITY AND DURATION TO CAUSE ONSITE RUNOFF (IECA, 2008). SUCH INSPECTIONS MUST CHECK:

- DAILY SITE INSPECTIONS (DURING PERIODS OF RUNOFF PRODUCING RAINFALL)
- ALL DRAINAGE, EROSION AND SEDIMENT CONTROL MEASURES
- OCCURRENCES OF EXCESSIVE SEDIMENT DEPOSITION (WHETHER ON-SITE OR OFF-SITE)
- ALL SITE DISCHARGE POINTS (INCLUDING DEWATERING ACTIVITIES AS APPROPRIATE)
- WEEKLY SITE INSPECTIONS (EVEN IF WORK IS NOT OCCURRING ON-SITE)
- ALL DRAINAGE FROSION AND SEDIMENT CONTROL MEASURES.
- OCCURRENCES OF EXCESSIVE SEDIMENT DEPOSITION (WHETHER ON-SITE OR OFF-SITE)
- OCCURRENCES OF CONSTRUCTION MATERIALS, LITTER OR SEDIMENT PLACED, DEPOSITED, WASHED
- OR BLOWN FROM THE SITE, INCLUDING DEPOSITION BY VEHICULAR MOVEMENTS. ■ LITTER AND WASTE RECEPTORS
- OIL, FUEL AND CHEMICALS STORAGE FACILITIES
- PRIOR TO ANTICIPATED RUNOFF PRODUCING RAINFALL
- ALL DRAINAGE, EROSION AND SEDIMENT CONTROL MEASURES
- ALL TEMPORARY FLOW DIVERSION AND DRAINAGE WORKS
- FOLLOWING RUNOFF PRODUCING RAINFALL
- ALL DRAINAGE, EROSION AND SEDIMENT CONTROL MEASURES
- OCCURRENCES OF EXCESSIVE SEDIMENT DEPOSITION (WHETHER ON-SITE OR OFF-SITE)

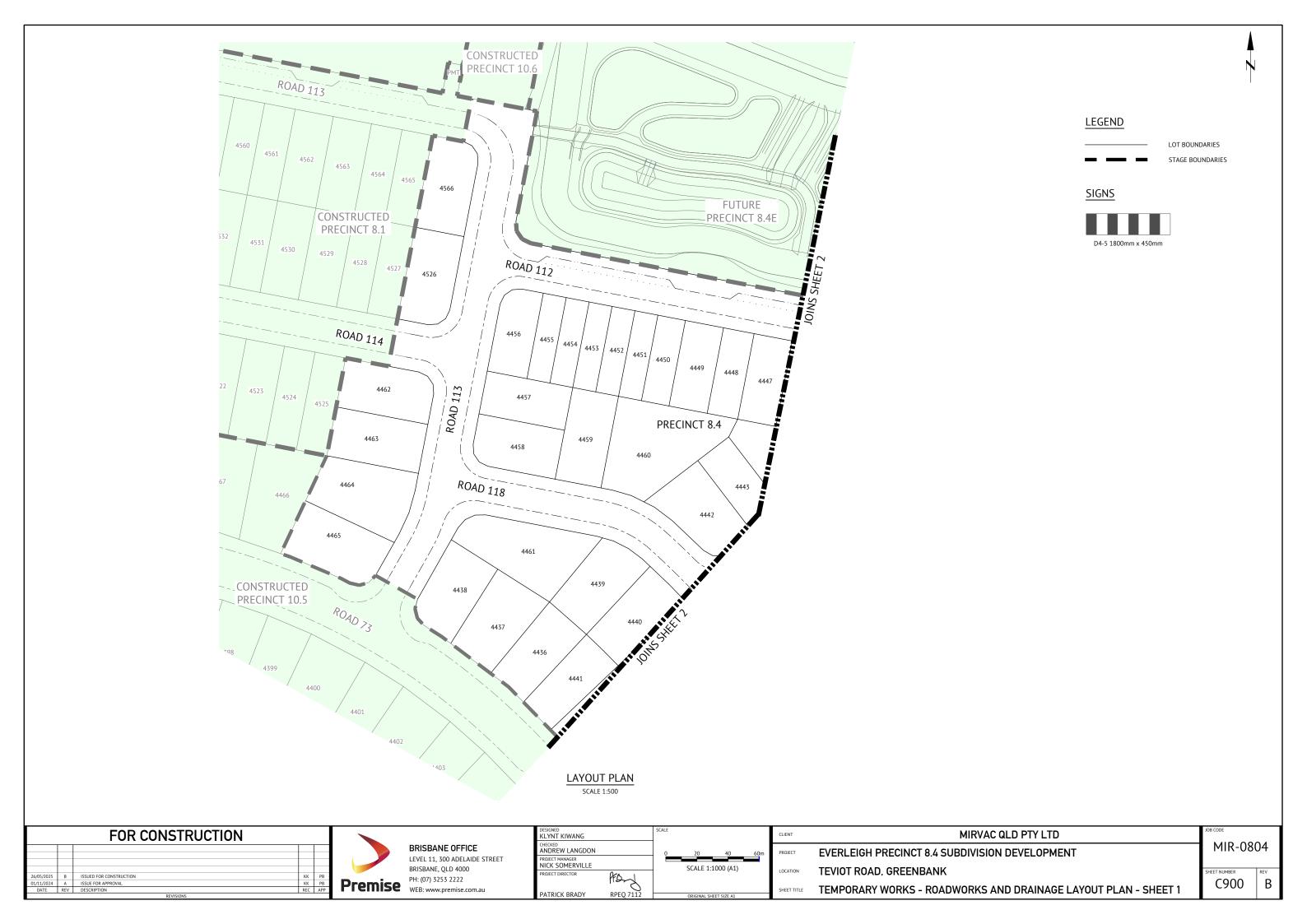
■ OCCURRENCES OF CONSTRUCTION MATERIALS, LITTER OR SEDIMENT PLACED, DEPOSITED, WASHED OR BLOWN FORM THE SITE, INCLUDING DEPOSITION BY VEHICULAR MOVEMENTS.

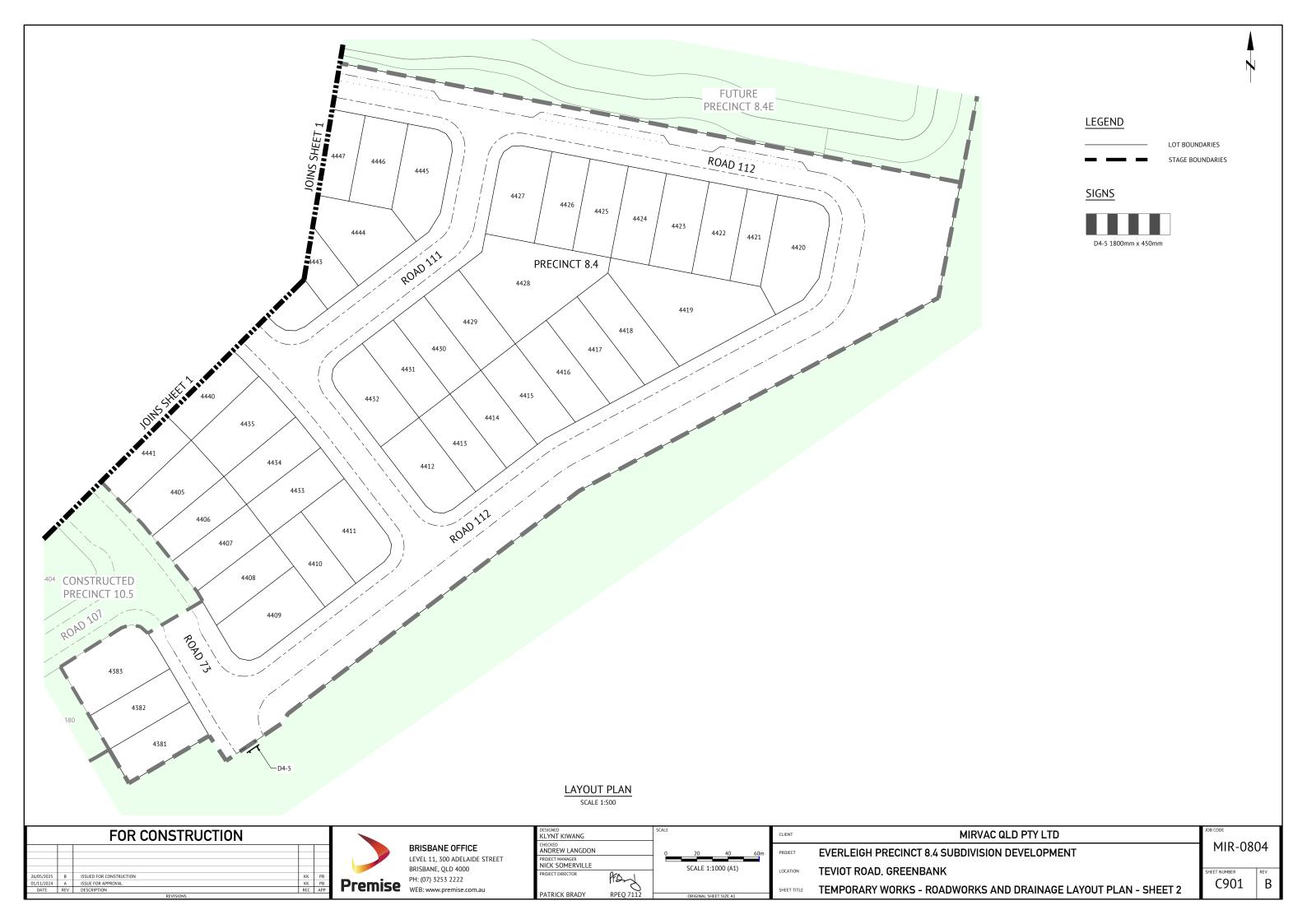
> I CERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION

T. CLARK (CPESC 6089)

J. Clarl

FOR CONSTRUCTION					
26/05/2025	В	ISSUED FOR CONSTRUCTION	KK	PB	
01/11/2024	Α	ISSUE FOR APPROVAL	KK	PB	
DATE	REV	DESCRIPTION	REC	APP	
		REVISIONS			




BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 PH: (07) 3253 2222

SIGNED ARK DAVIS	
ecked NDREW LANGDON	
OJECT MANAGER CK SOMERVILLE	
DJECT DIRECTOR	703
ATRICK BRADY	RPEQ 7112

MIRVAC QLD PTY LTD **EVERLEIGH PRECINCT 8.4 SUBDIVISION DEVELOPMENT** PROJECT TEVIOT ROAD, GREENBANK **EROSION AND SEDIMENT CONTROL NOTES AND DETAILS**

MIR-0804

