SHEET LIST TABLE

HEET NO.	SHEET LIST TABLE SHEET TITLE
	•···
C001	COVER SHEET
C002	SURVEY SETOUT PLAN
C003	OVERALL SERVICES LAYOUT
C004	SAFETY IN DESIGN
C100	ROADWORKS AND DRAINAGE LAYOUT PLAN - SHEET 1
C101	ROADWORKS AND DRAINAGE LAYOUT PLAN - SHEET 2
C200	BULK EARTHWORKS LAYOUT PLAN - SHEET 1
C201	BULK EARTHWORKS LAYOUT PLAN - SHEET 2
C210	BULK EARTHWORKS NOTES AND DETAILS - SHEET 1
C211	BULK EARTHWORKS NOTES AND DETAILS - SHEET 2
C220	EARTHWORKS SUBGRADE ROCK PREPARATION DETAILS
C300	ROADWORKS NOTES AND DETAILS
C310	GUROMAN DRIVE LONG SECTION AND CROSS SECTIONS - SHEET 2
C311	GUROMAN DRIVE CROSS SECTIONS - SHEET 2
C312	SAHARA STREET LONG SECTION
C313	SAHARA STREET CROSS SECTIONS - SHEET 1
C314	SAHARA STREET CROSS SECTIONS - SHEET 2
C315	PAPAYA LANE LONG SECTION AND CROSS SECTIONS
C316	TERRACOTTA STREET LONG SECTION AND CROSS SECTIONS
C317	ROAD 132 LONG SECTION AND CROSS SECTIONS
C318	DRIVEWAY 12 LONG SECTION AND CROSS SECTIONS
C320	INTERSECTION DETAILS LAYOUT
C330	PAVEMENT MARKINGS AND SIGNAGE LAYOUT PLAN - SHEET 1
C331	PAVEMENT MARKINGS AND SIGNAGE LAYOUT PLAN - SHEET 2
C400	STORMWATER CATCHMENT LAYOUT PLAN
C410	STORMWATER DRAINAGE LONG SECTIONS - SHEET 1
C411	STORMWATER DRAINAGE LONG SECTIONS - SHEET 2
C412	STORMWATER DRAINAGE LONG SECTIONS - SHEET 3
C413	STORMWATER DRAINAGE LONG SECTIONS - SHEET 4
C420	STORMWATER DRAINAGE NOTES AND DETAILS
C430	STORMWATER DRAINAGE STRUCTURE DETAILS - SHEET 1
C431	STORMWATER DRAINAGE STRUCTURE DETAILS - SHEET 2
C440	STORMWATER CALCULATIONS 39% AEP STORM - SHEET 1
C441	STORMWATER CALCULATIONS 39% AEP STORM - SHEET 2
C443	STORMWATER CALCULATIONS 1% AEP STORM - SHEET 1
C444	STORMWATER CALCULATIONS 1% AEP STORM - SHEET 2
C500	SEWERAGE LOCALITY PLAN & NOTES
C510	SEWERAGE LAYOUT PLAN - SHEET 1
C511	SEWERAGE LAYOUT PLAN - SHEET 2
C520	SEWERAGE LONG SECTIONS - SHEET 1
C521	SEWERAGE LONG SECTIONS - SHEET 2
C522	SEWERAGE LONG SECTIONS - SHEET 3
C523	SEWERAGE LONG SECTIONS - SHEET 4
C530	SEWERAGE NOTES AND DETAILS
C600	WATER RETICULATION LOCALITY PLAN & NOTES
C610	WATER RETICULATION LAYOUT PLAN - SHEET 1
C611	WATER RETICULATION LAYOUT PLAN - SHEET 2
C620	WATER LIVE CONNECTION AND TYPICAL DETAILS
C700	EROSION AND SEDIMENT CONTROL - EXISTING CATCHMENTS
C701	EROSION AND SEDIMENT CONTROL - BULK EARTHWORKS PHASE
C702	EROSION AND SEDIMENT CONTROL - STABILISATION PHASE
C710	EROSION AND SEDIMENT CONTROL NOTES AND DETAILS
C720	EROSION AND SEDIMENT CONTROL DRAIN DETAILS
C900	TEMPORARY WORKS - ROADWORKS AND DRAINAGE - SHEET 1

EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPMENT **TEVIOT ROAD, GREENBANK** FOR MIRVAC QLD PTY LTD

GENERAL NOTES

- 1. ALL DIMENSIONS GIVEN ON THESE DRAWINGS ARE IN METRES UNLESS NOTED OTHERWISE. ALL NEW WORK AND MATERIALS SHALL COMPLY WITH CURRENT RELEVANT COUNCIL
- STANDARDS AND SPECIFICATIONS. ALL WORK SHALL BE JOINED NEATLY TO EXISTING CONSTRUCTION.
- THE CONTRACTOR IS TO LOCATE, IDENTIFY AND ESTABLISH THE CONNECTIVITY OF ALL EXISTING SERVICES WITHIN THE LIMITS OF PROPOSED WORKS AND CONFIRM THIS INFORMATION WITH THE ENGINEER PRIOR TO THE COMMENCEMENT OF WORK
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING ALL MEASURING DEVICES, SAFETY EQUIPMENT AND MACHINERY REQUIRED TO CARRY OUT INSPECTIONS/MEETINGS AS SPECIFIED OR REQUESTED BY THE ENGINEER.
- CONSTRUCTION CERTIFICATION REQUIREMENTS SUCH AS PAVEMENT PROOF ROLLS ETC. ARE TO BE AS PER THE LOGAN
- CITY COUNCIL SPECIFICATION. THESE NOTES SHALL APPLY TO ALL PORTIONS OF WORK.
- THE DRAWINGS ARE TO BE READ IN 8. CONJUNCTION WITH THE SPECIFICATIONS. ANY POINT OF CONFLICT WILL BE RESOLVED BY THE SUPERINTENDENT.
- THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING A CONSTRUCTION MANAGEMENT PLAN FOR THE SITE TO BE ACCEPTED BY EDQ. THIS PLAN IS TO INCLUDE ALL ITEMS AS LISTED IN THE DECISION NOTICE AS A MINIMUM

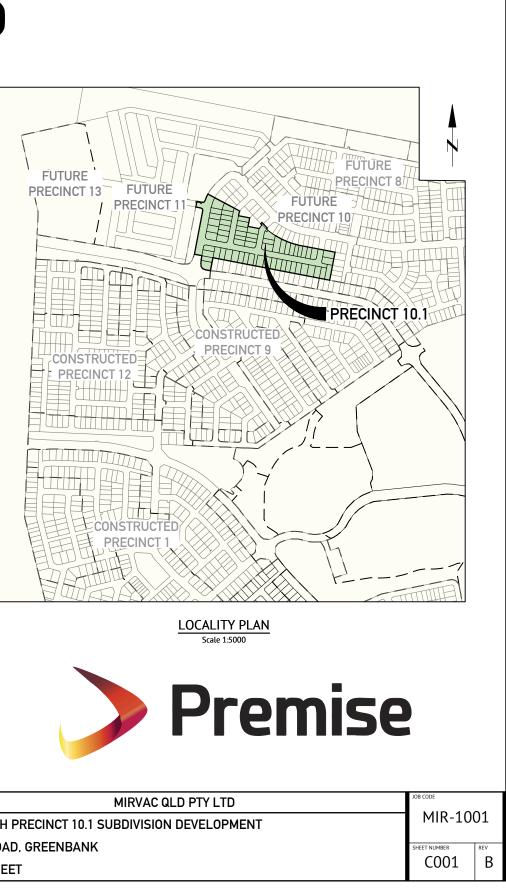
NOISE

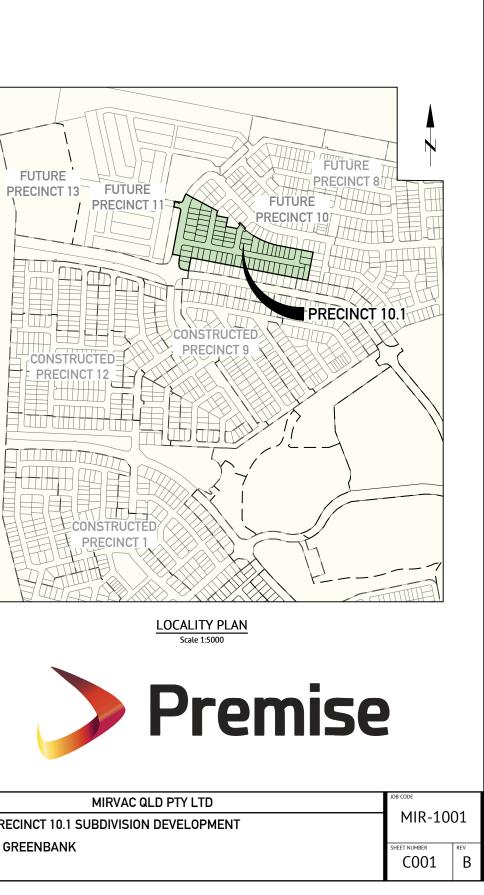
1. ALL PLANT AND EQUIPMENT SHALL BE CONTROLLED TO MINIMISE NOISE EMISSION IN ACCORDANCE WITH AS2436 (GUIDE TO NOISE CONTROL ON CONSTRUCTION. MAINTENANCE AND DEMOLITION). THE SITE WORKING HOURS SHOULD BE IN ACCORDANCE WITH LOCAL AUTHORITY REQUIREMENTS. WHERE NOT SPECIFIED THE HOURS SHALL BE:

MONDAY - SATURDAY 7:00am to 6:00pm SUNDAY OR PUBLIC HOLIDAY NO WORK PERMITTED

PRE-CONSTRUCTION &

APPROVALS

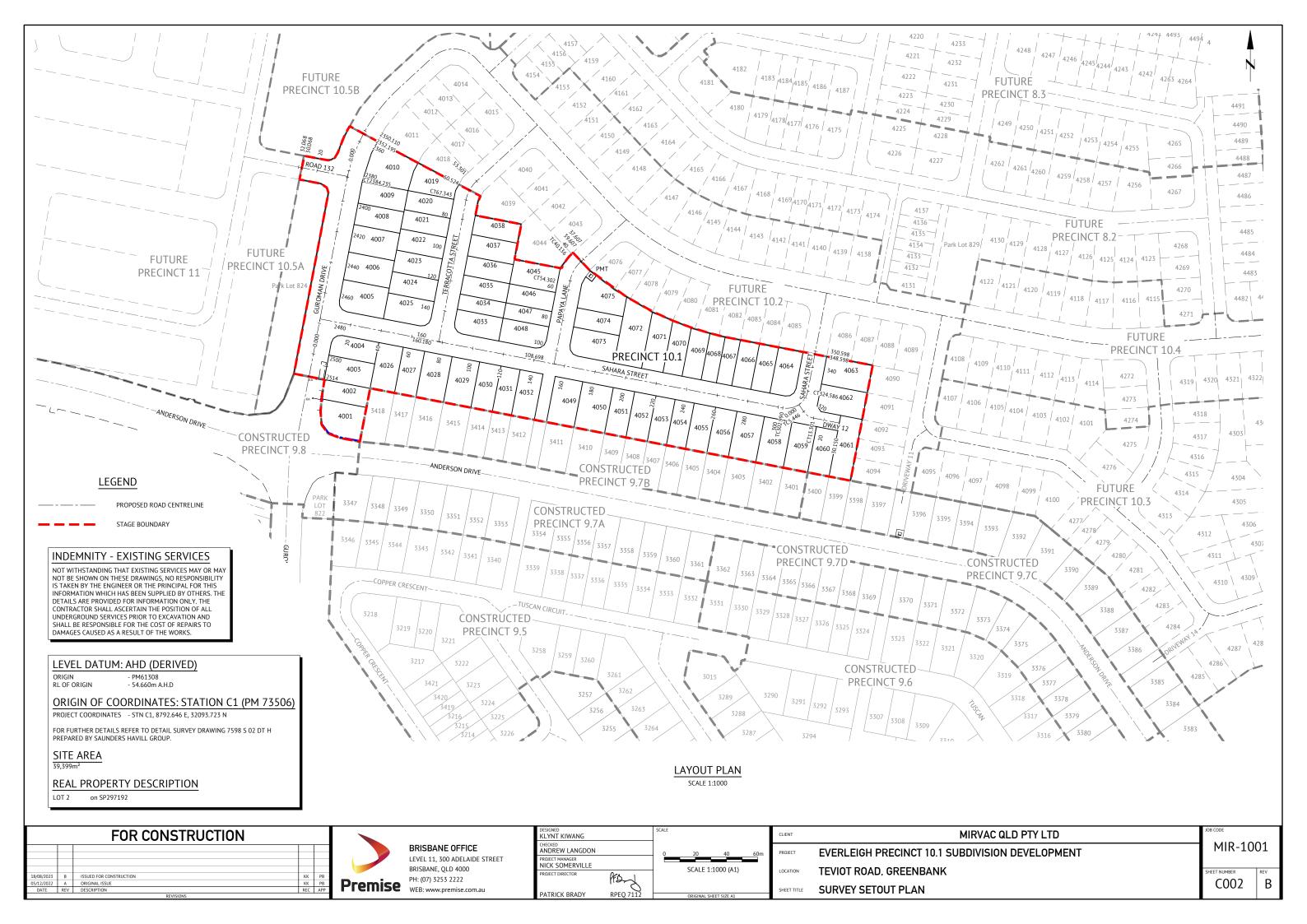

- NO LOCATING/ POTHOLING OF EXISTING SERVICES HAS BEEN CARRIED OUT. THE CONTRACTOR IS TO DETERMINE THE LOCATION AND DEPTH OF ALL EXISTING SERVICES WHICH AFFECT THE WORKS AND REPORT ANY POTENTIAL CLASHES TO THE SUPERINTENDENT PRIOR TO COMMENCEMENT OF ANY CONSTRUCTION WORKS.
- THE CONTRACTOR IS RESPONSIBLE FOR 2 ARRANGING WITH THE APPROPRIATE AUTHORITY FOR LOCATING EXISTING SERVICES AND FOR ANY MODIFICATIONS TO EXISTING SERVICES REQUIRED AS A RESULT OF THE WORKS. THE CONTRACTOR IS RESPONSIBLE TO
- 3 PROTECT ALL EXISTING SERVICES FROM DAMAGE
- ANY WORKS DAMAGED AS A RESULT OF CONSTRUCTION ARE TO BE REINSTATED TO RELEVANT AUTHORITY'S REQUIREMENTS AT THE CONTRACTORS COST
- FINISHED SURFACE LEVELS ARE TO BE GRADED UNIFORMLY BETWEEN LEVELS INDICATED ON THE DRAWINGS.

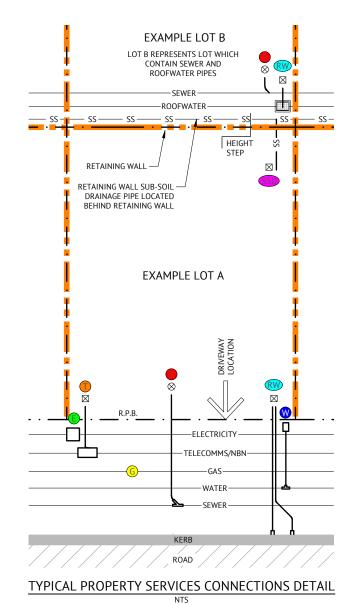

WORKPLACE HEALTH & SAFETY

- THE CONTRACTOR SHALL BE THE PRINCIPAL CONTRACTOR AS DESIGNATED BY THE WORK HEALTH AND SAFETY ACT (2011).
- THE CONTRACTOR SHALL PREPARE AND IMPLEMENT A WORKPLACE HEALTH AND SAFETY PLAN AS REQUIRED BY THE WORK HEALTH AND SAFETY ACT (2011).

SETOUT NOTES

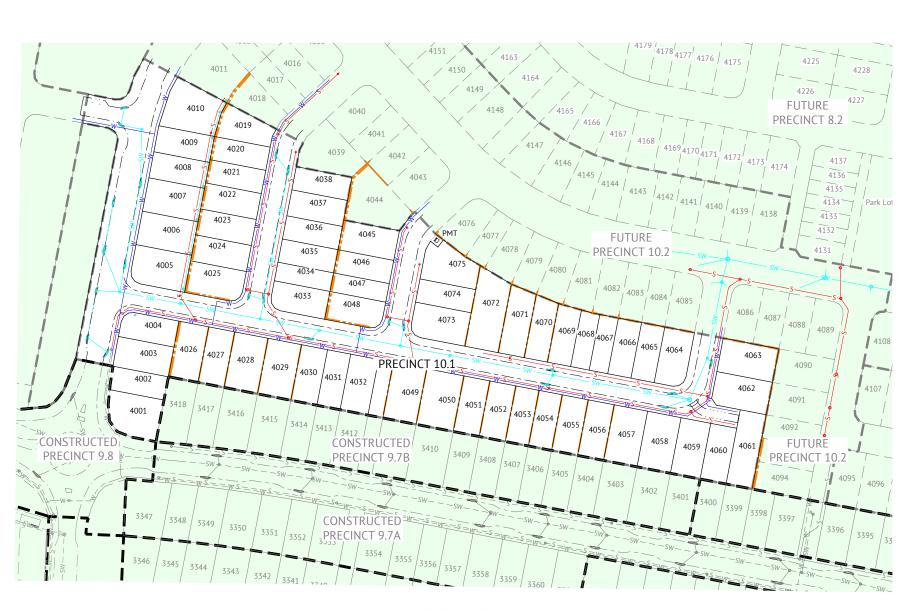
- CO-ORDINATE SETOUT PROVIDED ON THESE DRAWINGS IS BASED ON A CO-ORDINATE BASE PROVIDED ON THE DETAIL SURVEY DRAWING 7598 S 02 DTH. PREPARED BY SAUNDERS HAVILL GROUP. REFERENCE MARKS AND CORRESPONDING CO-ORDINATES ARE PROVIDED ON DRAWING CO02.
- THE LEVEL DATUM FOR WORKS IS A H D (AUSTRALIAN HEIGHT DATUM).



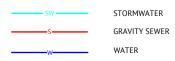


FOR CONSTRUCTION					
18/08/2023	В	ISSUED FOR CONSTRUCTION	КК	PB	
05/12/2022	Α	ORIGINAL ISSUE	КК	PB	
DATE	REV	DESCRIPTION	REC	APP	

	BRISBANE OFFICE
	LEVEL 11, 300 ADELAIDE STREET
	BRISBANE, QLD 4000
Dramica	PH: (07) 3253 2222
Premise	WEB: www.premise.com.au


М	CLIENT			SCALE		SIGNED YNT KIWANG
EVERLEIGH PRECINCT 10.1 SUB	PROJECT	<u>300</u> m	100 200	0		ECKED
		,	SCALE 1:5000 (A1)			DIECT MANAGER
TEVIOT ROAD, GREENBANK	LOCATION	,	56/122 1.5000 (/12)	1	PED -1	DIECT DIRECTOR
COVER SHEET	SHEET TITLE				Iland	
COVER SHEET			ORIGINAL SHEET SIZE A1		RPEQ 7112	TRICK BRADY

LEGEND - PROPERTY SERVICE CONNECTIONS


- WATER POLY SERVICE FROM WATER MAIN, METER BOX & COVER INSTALLED. BUILDER TO MAKE APPLICATION TO LOGAN CITY COUNCIL FOR METER ASSEMBLY SUPPLY AND INSTALLATION. WHERE WATER METER IS LOCATED BEHIND RETAINING WALL, 25mm POLYPIPE WILL BE SUPPLIED UNDER WALL INTO LOT AND WILL BE MARKED WITH 900X50X25 HW STAKE LABELLED "WATER".
- SEWER CAPPED Ø100 PVC PIPE (BURIED MAX 1.5m). MARKED WITH 40Ø ORANGE PVC CONDUIT SECURELY TAPED TO H.W. STAKE AT SURFACE (BURIED TO CAPPED PIPE). CONDUIT LABELLED "SEWER."
- ROOFWATER CONNECTION LOCATION CAN BE EITHER FRONT OF LOT VIA KERB ADAPTOR OUTLET TO ROAD, OR REAR OF LOT INTO ROOFWATER DRAINAGE PIPE VIA PIT. CAPPED PVC Ø100 PIPES (BURIED MAX 1.5m) MARKED WITH 900x50x25 HW STAKE LABELLED "ROOFWATER."
- RETAINING WALL SUB-SOIL DRAINAGE OUTLET POINT TO LOT FOR RETAINING WALL SUB-SOIL DRAINAGE TO BE CONNECTED TO YARD DRAINAGE BY BUILDER. Ø100 NON-SLOTTED AGG PIPE CAPPED AND TERMINATED 200m ABOVE SURFACE. PVC DUCT TAPED TO 900x50x25 HW STAKE LABELLED "RETAINING WALL SUBSOIL OUTLET".
- TELECOMMUNICATIONS/NBN PVC CONDUIT (BURIED APPROX 300mm). MARKED WITH 900x50x25 HW STAKE LABELLED "TELECOMMS".
- ELECTRICITY ELECTRICITY PILLAR EXISTS IN ROAD VERGE. BUILDER TO MAKE APPLICATION WITH ENERGY PROVIDER FOR SERVICE INSTALLATION TO LOT. WHERE ELECTRICITY PILLAR IS LOCATED BEHIND RETAINING WALL, CONDUIT WILL BE SUPPLIED UNDER WALL INTO LOT AND WILL BE MARKED WITH 900x50x25 HW STAKE LABELLED 'ELECTRICITY'.
- **GAS** GAS MAIN EXISTS IN ROAD VERGE. BUILDER/HOME OWNER TO MAKE APPLICATION TO GAS PROVIDER FOR SERVICE INSTALLATION TO LOT.
- RETAINING WALL
- SERVICE TERMINATION POINT MARKER. 900x50x25 HW STAKE, OR 400 ORANGE PVC CONDUIT STAKE

LAYOUT PLAN

LEGEND - PROPOSED

FOR CONSTRUCTION		designed KLYNT KIWANG	SCALE	CLIENT	MIRVA
	BRISBANE OFFICE	CHECKED ANDREW LANGDON PROJECT MANAGER	0 20 40 60m	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVIS
18,08/2023 B ISSUED FOR CONSTRUCTION KK PB	BRISBANE, QLD 4000	NICK SOMERVILLE PROJECT DIRECTOR	SCALE 1:1000 (A1)	LOCATION	TEVIOT ROAD, GREENBANK
05/12/2022 A ORIGINAL ISSUE KK PB DATE REV DESCRIPTION REC APP	Premise PH: (07) 3253 2222 WEB: www.premise.com.au	PATRICK BRADY RPEO 7112		SHEET TITLE	OVERALL SERVICES LAYOUT
REVISIONS		PATRICK BRADT RPEQ / 112	ORIGINAL SHEET SIZE A1		

LEGEND - CONSTRUCTED

SWSW-
ss

STORMWATER GRAVITY SEWER WATER

AC QLD PTY LTD	JOB CODE	
ISION DEVELOPMENT	MIR-1001	
	SHEET NUMBER	B

DESIGN HAZARD NOTES:

- 1. PREMISE, HAVING BEEN COMMISSIONED TO CARRY OUT DETAILED DESIGN AND DOCUMENTATION OF THESE WORKS, CONFIRM THAT THE PREMISE DRAWING SET HAS BEEN INTERNALLY REVIEWED FOR DESIGN SAFETY IN ACCORDANCE WITH SECTION 22 OF THE WORK HEALTH AND SAFETY ACT 2011 QLD.
- THIS REPORT SUMMARISES AN INTERNAL REVIEW OF PREMISE'S DETAILED DESIGN DRAWINGS FOR DESIGN SAFETY.
 THIS REPORT IN NO WAY RELIEVES THE PRINCIPAL, CONTRACTOR OR ANY OTHER PARTY OF THEIR OWN OBLIGATIONS AND RESPONSIBILITIES UNDER THE WORK HEALTH AND SAFETY ACT 2011 QLD, INCLUDING (BUT NOT LIMITED TO) CONSULTATION WITH THE DESIGNER UNDER SECTION 294 OF THE ACT, THE PREPARATION OF SATISFACTORY SAFE WORK METHOD STATEMENTS AND DUTIES OF CARE.
- 4. IT IS A REQUIREMENT UNDER SECTION 296 OF THE WORK HEALTH AND SAFETY ACT 2011 QLD, THAT A COPY OF THIS REPORT BE
- PROVIDED TO THE CONTRACTOR BY THE ENTITY COMMISSIONING THE WORK SHOWN OF THE PREMISE DRAWINGS. 5. AS PER THE DEPARTMENT OF JUSTICE AND THE ATTORNEY-GENERAL- WORKPLACE HEALTH AND SAFETY QUEENSLAND, A WRITTEN REPORT IS NOT REQUIRED FOR DESIGNS THAT HAVE TYPICAL FEATURES.

CONSEQUENCE TABLE CONSEQUENCE COST/TIME LEVEL FATALITY OR MULTIPLE PERSONS ONSITE WITH LIFE THREATENING HEALTH EFFECT OR INABILITY TO CONTINUE 5 - CATASTROPHIC HUGE FINANCIAL OR TIME LOSS EXTENSIVE INJURIES, OR ONSET OF SEVERE OR LIFE THREATENING HEALTH EFFECT TO SINGLE PERSON ONSITE. MULTIPLE PERSONS WITH 4 - MAJOR MAJOR FINANCIAL OR TIME LOSS ONSET OF IRREVERSIBLE HEALTH EFFECTS. PREMANENT INJURT TO PERSON INSITE. MEDICAL TREATMENT REQUIRED. IRREVERSIBLE HEALTH EFFECT TO A 3 - MODERATE SINGLE PERSON. MULTIPLE PERSONS ONSITE WITH REVERSIBLE HEALTH HIGH FINANCIAL OR TIME LOSS EFFECTS. FIRST AID, SINGLE OR MULTIPLE INJURIES AMONGST PERSONS ONSITE. SINGLE PERSON ONSITE WITH MODERATE SHORT TERM REVERSIBLE MEDIUM FINANCIAL OR TIME LOSS 2 - MINOR HEALTH EFFECTS. NO INJURIES. OVER EXPOSURE TO A SINGLE PERSON ONSITE, BUT NO 1 - INSIGNIFICANT LOW FINANCIAL OR TIME LOSS REPORTED HEALTH EFFECTS.

CONSTRUCTION HAZARD NOTES:

1. UNDER THE QUEENSLAND WORK HEALTH AND SAFETY ACT 2011, THE WORK HEALTH AND SAFETY REGULATION 2011 AND OTHER LEGISLATION AND GUIDELINES, THE PRINCIPAL CONTRACTOR HAS SPECIFIC OBLIGATIONS IN RELATION TO THE SAFE OPERATION OF THE SITE AND OF THE WORKS

TO ASSIST THE PRINCIPAL CONTRACTOR IN COMPLYING WITH THESE OBLIGATIONS THE PROJECT DESIGNERS HAVE IDENTIFIED BY DRAWING NOTES, AREAS WHERE POTENTIAL HAZARDS MAY ARISE. THESE NOTES OR ADVICE, SHALL NOT NECESSARILY BE CONSIDERED COMPLETE AND ARE BASED UPON THE DESIGNERS' UNDERSTANDING OF THE SAFETY RISKS ASSOCIATED WITH THE WORKS.

THESE NOTES OR ADVICE SHALL NOT RELIEVE THE PRINCIPAL CONTRACTOR OF ANY ORLIGATION UNDER THE RELEVANT LEGISLATION OR GUIDELINE. THE PRINCIPAL CONTRACTOR SHALL REMAIN RESPONSIBLE FOR THE PREPARATION OF AN APPROPRIATE WORK HEALTH SAFETY MANAGEMENT PLAN AND SAFE WORK METHOD STATEMENTS FOR THE SITE. 2. PURSUANT TO THE WORK HEALTH AND SAFETY ACT 2011 WE HEREBY ADVISE THAT OUR DESIGN SAFETY REVIEW HAS IDENTIFIED

UNUSUAL OR ATYPICAL DESIGN FEATURES THAT MAY PRESENT ADDITIONAL HAZARDS OR RISKS DURING THE CONSTRUCTION PHASE AND THESE ARE LISTED IN THE CONSTRUCTION HAZARD SCHEDULE.

	RISK ANALYSIS MATRIX					
1 - INSIGNIFICANT 2 - MINOR 3 - MODERATE 4 - MAJOI						5 - CATASTROPHIC
	A - ALMOST CERTAIN	MODERATE	HIGH	EXTREME	EXTREME	EXTREME
l g	B - LIKELY	MODERATE	HIGH	HIGH	EXTREME	EXTREME
ELIHOOI	C - POSSIBLE	LOW	MODERATE	HIGH	EXTREME	EXTREME
LIKE	D - UNLIKELY	LOW	LOW	MODERATE	HIGH	EXTREME
	E - RARE	LOW	LOW	MODERATE	HIGH	HIGH

	RISK EVALUATION TABLE				
	RISK LEVEL	ACTION REQUIRED			
Γ	EXTREME	UNACCEPTABLE RISK. RE-DESIGN REQUIRED. DO NOT PROCEED WITHOUT ADDITIONAL CONTROLS.			
Γ	HIGH	UNACCEPTABLE RISK. ADDITIONAL CONTROLS NEEDED. CONSIDER FURTHER REVIEW AND CONSIDER RE-DESIGN			
	MODERATE	RISK MAY BE ACCEPTABLE. MANAGEMENT TO DETERMINE ACTIONS REQUIRED			
	LOW	ACCEPTABLE. MANAGE RISK THROUGH ROUTINE PROCEDURES AND OTHER ADMINISTRATIVE CONTROLS			

LIKELIHOOD TABLE				
LEVEL	LEVEL DESCRIPTION			
A - ALMOST CERTAIN	THE EVENT <u>IS</u> EXPECTED TO OCCUR IN MOST CERTAIN CIRCUMSTANCES	MORE THAN ONCE PER YEAR		
B - LIKELY	THE EVENT WILL PROBABLY OCCUR IN MOST CIRCUMSTANCES	AT LEAST ONCE IN 5 YEARS		
C - POSSIBLE	THE EVEN T SHOULD OCCUR AT SOME TIME	AT LEAST ONCE IN 10 YEARS		
D - UNLIKELY	THE EVENT <u>COULD</u> OCCUR AT SOME TIME	AT LEAST ONCE IN 30 YEARS		
E - RARE	THE EVENT MAY OCCUR IN EXCEPTIONAL CIRCUMSTANCES	LESS THAN ONCE IN 30 YEARS		

FOR CONSTRUCTION 8/08/2023 ISSUED FOR CONSTRUCTION 022 A ORIGINAL ISSUE

	DESIGN HAZARD SCHEDULE						
ITEM	DESIGN HAZARD	POTENTIAL HAZARD	RISK	ELIMINATION / MINIMISATION OF HAZARD / RISK	RESIDUAL RISK		
D1	URBAN LAYOUT HAZARD	THE URBAN LAYOUT IS DESIGNED AROUND A PARTICULAR HAZARD :- - INTERSECTION IS UNCLEAR WHICH ROAD HAS PRIORITY	HIGH	THE HAZARD HAS BEEN REDUCED/ELIMINATED BY:- - LINE MARRED INTERSECTION TO ENSURE IT IS CLEAR WHICH ROAD HAS PRIORITY - DESIGN VEHICLE SWEPT PATH CHECKED FOR COMPLIANCE	LOW		
D2	OVERHEAD SERVICES	EXISTING UNDERGROUND AND/OR OVERHEAD SERVICES HAZARD EXIST ON SITE AND NEEDS TO BE REMOVED AND RELOCATED.	HIGH	THE DESIGN OF THE PROJECT HAS INCORPORATED THE RELOCATION OF THESE EXISTING SERVICES AND THE CONTRACTOR IS TO BE MADE AWARE OF THESE EXISTING SERVICES AND TAKE ALL ACTIONS NECESSARY TO MITIGATE THIS HAZARD DURING CONSTRUCTION.	MEDIUM		
D3	DEEP EXCAVATION HAZARD	DEEP EXCAVATION IS REQUIRED TO INSTALL SEWER TO SERVICE STRUCTURE.	HIGH	THE DEEP EXCAVATION HAZARD CANNOT BE AVOIDED AND THE CONTRACTOR WILL NEED TO TAKE ALL ACTIONS NECESSARY TO ADDRESS THIS HAZARD DURING CONSTRUCTION.	MEDIUM		
D4	HIGH RETAINING WALLS	SOME AREAS OF WORKS CONTAIN HIGH RETAINING WALLS WHERE LAND MORPHOLOGY DICTATES.	HIGH	HIGH RETAINING WALLS CANNOT BE AVOIDED DUE TO EXISTING LAND MORPHOLOGY. SINGLE TIER WALLS HAVE LIMITED TO A MAX HEIGHT OF 2m. CONTRACTOR WILL NEED TO TAKE ALL ACTIONS NECESSARY TO ADDRESS THIS HAZARD DURING CONSTRUCTION.	MEIDUM		
D5	WATER BODIES	PROPOSED CONSTRUCTION WATER DAMS WILL BE PRESENT ON SITE.	MEDIUM	PROPOSED WATER BODIES HAVE BEEN LOCATED AWAY FROM PUBLIC ACCESS AREAS. ACCESS TO THESE LOCATION WILL BE RESTRICTED FROM THE PUBLIC. CONTRACTOR WILL NEED TO TAKE ALL ACTIONS NECESSARY TO ADDRESS THIS HAZARD DURING CONSTRUCTION.	LOW		

CONSTRUCTION HAZARD SCHEDULE

ITEM	POTENTIAL HAZARD	POSSIBLE PREV
C1	DEEP EXCAVATION HAZARD	ALL STEPS MUST BE TAKEN TO OBTAIN CURRENT UNDERGROUND SERVICES INFORMA UNDERTAKEN BY APPROPRIATELY EXPERIENCED AND QUALIFIED PERSONNEL. EXCAV. ERECTED, IF REQUIRED.
C2	OVERHEAD POWER HAZARD	WARNING SIGNS AND MARKERS SHALL BE ERECTED ADVISING OF THE PRESENCE OF LI ON SITE DURING EARTHWORKS AND ANY OTHER HIGH RISK WORKS, IF REQUIRED.
C3	UNDERGROUND ELECTRICAL, TELECOMMUNICATION, GAS AND WATER MAIN HAZARD	WARNING SIGNS AND MARKERS SHALL BE ERECTED ADVISING OF THE PRESENCE OF T AUTHORITY PRIOR TO THE COMMENCEMENT OF EXCAVATION. A REPRESENTATIVE OF REQUIRED.
C4	WORKS NEAR RAIL, AIRPORTS AND ROADS HAZARD	ALL REQUIRED PERMITS, APPROVALS AND SAFETY REQUIREMENTS FROM THE RELEVA REPRESENTATIVE OF THE RELEVANT AUTHORITY SHALL REMAIN ON SITE DURING CON
C5	PEDESTRIAN ACCESS HAZARD	WORK WITHIN OR ADJACENT TO AREAS WHICH THE PUBLIC REQUIRES PEDESTRIAN AC
C6	POTENTIAL VEHICLE HAZARD	SITE PERSONNEL SHALL BE ADVISED OF THE POTENTIAL HAZARDS AND THE APPROPR APPROPRIATE SAFETY CLOTHING SHALL BE WORN AND THE REQUIRED SIGNAGE SHAL COMPROMISE THE SAFETY OF THE VEHICLE OCCUPANTS OR THE SITE PERSONNEL.
C7	DEMOLITION AND CLEARING HAZARD	SUITABLE QUALIFIED AND EXPERIENCED PERSONNEL SHALL BE RESPONSIBLE FOR TH CONTRACTORS WORK METHOD STATEMENT SHALL ALSO GIVE CONSIDERATION TO FA
C8	TRAFFIC MANAGEMENT HAZARD	SUITABLE QUALIFIED AND EXPERIENCED PERSONNEL SHALL BE RESPONSIBLE FOR TH PROJECT AT ALL TIMES. THE CONTRACTOR SHALL DEVELOP A TRAFFIC MANAGEMENT I WITH THE MANUAL FOR UNIFORM TRAFFIC CONTROL.
С9	ASBESTOS HAZARD	ALL PERSONNEL SHOULD BE ADVISED OF THE POTENTIAL PRESENCE OF ASBESTOS AN IDENTIFICATION IS TO BE UNDERTAKEN IN ACCORDANCE WITH WORKPLACE HEALTH A THE ACTION PLAN IS TO BE IMPLEMENTED TO REMEDIATE THE SITE.
C10	POTENTIAL ROCK FALL	LAND ABOVE THE SITE HAS BEEN CLEARED AND SOME EARTHWORKS HAS BEEN UNDE RESPONSIBLE FOR IDENTIFYING ANY POTENTIAL HAZARD AND THE CONTRACTOR SHA

	Designed Scale KLYNT KIWANG CHECKED ANDREW LANGDON CHECKED		SCALE	CLIENT	MIRVAC QLD PTY LTD	JOB CODE	
			PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPMENT	MIR-10		
	PROJECT MANAGER NICK SOMERVILLE						
	PROJECT DIRECTOR	PFD		LOCATION	TEVIOT ROAD, GREENBANK		REV
		. 0		SHEET TITLE	SAFETY IN DESIGN	C004	В
	PATRICK BRADY	RPEQ 7112	ORIGINAL SHEET SIZE A1			4	,

VENTATIVE ACTION

YATION BEFORE EXCAVATION WORKS COMMENCE. EXCAVATION WORK MUST BE AVATIONS SHALL BE ADEQUATELY SHORED AND APPROPRIATE BARRICADES AND SIGNAGE

LIVE OVERHEAD CABLES. A REPRESENTATIVE OF THE SUPPLY AUTHORITY SHALL REMAIN

THE EXISTING SERVICE. THE SERVICE SHALL BE IDENTIFIED AND MARKED BY THE SUPPLY F THE SUPPLY AUTHORITY SHALL REMAIN ON SITE DURING THE EXCAVATION WORK. IF

ANT AUTHORITY SHOULD BE OBTAINED PRIOR TO COMMENCING WORK. A ONSTRUCTION WHILE THE HAZARD REMAINS.

ACCESS MUST HAVE APPROPRIATE BARRICADES AND SIGNAGE ERECTED AT ALL TIMES. PRIATE PROCEDURES FOR WORKING ADJACENT TO OPERATING PUBLIC ROADS.

ALL BE ERECTED. THE WORKS SHALL BE UNDERTAKEN IN A MANNER WHICH DOES NOT

HE DEMOLITION AND CLEARING WORKS FOR THE PROJECT AT ALL TIMES. THE FALLING DEBRIS, COLLAPSE AND DANGEROUS AIRBORNE AGENTS

HE SAFE AND ORDERLY PASSAGE OF VEHICULAR AND PEDESTRIAN TRAFFIC THROUGH THE PLAN (TMP) FOR THE PROJECT TO ESTABLISH APPROPRIATE CONTROLS IN ACCORDANCE

AND AN IDENTIFICATION AND ACTION PLAN SHALL BE PUT IN PLACE. SAMPLING AND AND SAFETY REGULATIONS. IF SAMPLING CONFIRMS THE PRESENCE OF ASBESTOS THEN

PERTAKEN CREATING A POTENTIAL ROCK FALL HAZARD. SUITABLE PERSONNEL SHALL BE IALL TAKE APPROPRIATE ACTION TO ELIMINATE THE HAZARD.

LEGEND - PROPOSED

	PAVEMENT
<u> </u>	PROPOSED IPWEA STD TYPE 'B1' KERB & CHANNEL. REFER IPWEA STD DWG RS-080.
	PROPOSED IPWEA TYPE 'M3' KERB & CHANNEL. REFER IPWEA STD DWG RS-080.
	PROPOSED IPWEA TYPE 'ER1' EDGE RESTRAINT. REFER IPWEA STD DWG RS-080.
<u> </u>	PROPOSED IPWEA STD TYPE 'B2' KERB ONLY. REFER IPWEA STD DWG RS-080.
	PROPOSED IPWEA CHANNEL 900 WIDE. REFER IPWEA STD DWG RS-080.
	PROPOSED 1.5m WIDE (U.N.O.) CONCRETE FOOTPATH. REFER LCC STD DWGS.
	PROPOSED CONCRETE LANDSCAPING FOOTPATH. REFER LANDSCAPING DRAWINGS FOR DETAILS.
	PROPOSED KERB RAMP. REFER IPWEA STD DWG RS-090.
SW	PROPOSED STORMWATER
$\frac{1}{523}$	PROPOSED STORMWATER STRUCTURE No.
— – — ^{KA} — – —	ROOFWATER DRAINAGE KERB ADAPTORS WITH TWIN 125x75 GALVANISED RHS. REFER DETAIL ON DWG C420.
— – — – – – – – – – – – – – – – – – – –	ROOFWATER DRAINAGE KERB ADAPTORS. REFER DETAIL ON DWG C420.
RW	PROPOSED ROOFWATER HOUSE CONNECTION (150 Ø uPVC)
	PROPOSED CONCRETE SLEEPER RETAINING WALL
	PROPOSED CONCRETE PANEL RETAINING WALL
ightarrow	ZERO LOT BOUNDARY
,	PROPOSED FUTURE DRIVEWAY LOCATION
S	PROPOSED SEWER
w	PROPOSED WATER
- c c c	PROPOSED WATER CONDUIT
	STAGE BOUNDARY
	DURATHEM THRESHOLD TREATMENT. REFER TO URBIS EVERLEIGH LANDSCAPE MASTERPLAN - PART B (PAGE 20) FOR COLOUR AND PATTERN.
<u></u>	PROPOSED LANDSCAPING. CONCRETE EDGE RESTRAINT BY LANDSCAPING CONTRACTOR. CIVIL CONTRACTOR TO COORDINATE WITH LANDSCAPING CONTRACTOR TO CARRY OUT THEIR WORKS. REFER TO LANDSCAPE DRAWINGS FOR FURTHER DETAIL.
*	TREES

PMT

PADMOUNT TRANSFORMER

LEGEND - CONSTRUCTED

KA
— — — — — — — — — — — — — — — — — — —
SWSW-
— — — S — — — S —

13 501

ROOFWATER DRAINAGE KERB ADAPTORS WITH TWIN 125x75 GALVANISED RHS. REFER DETAIL ON DWG C420.

ROOFWATER DRAINAGE KERB ADAPTORS. REFER DETAIL ON DWG C420.

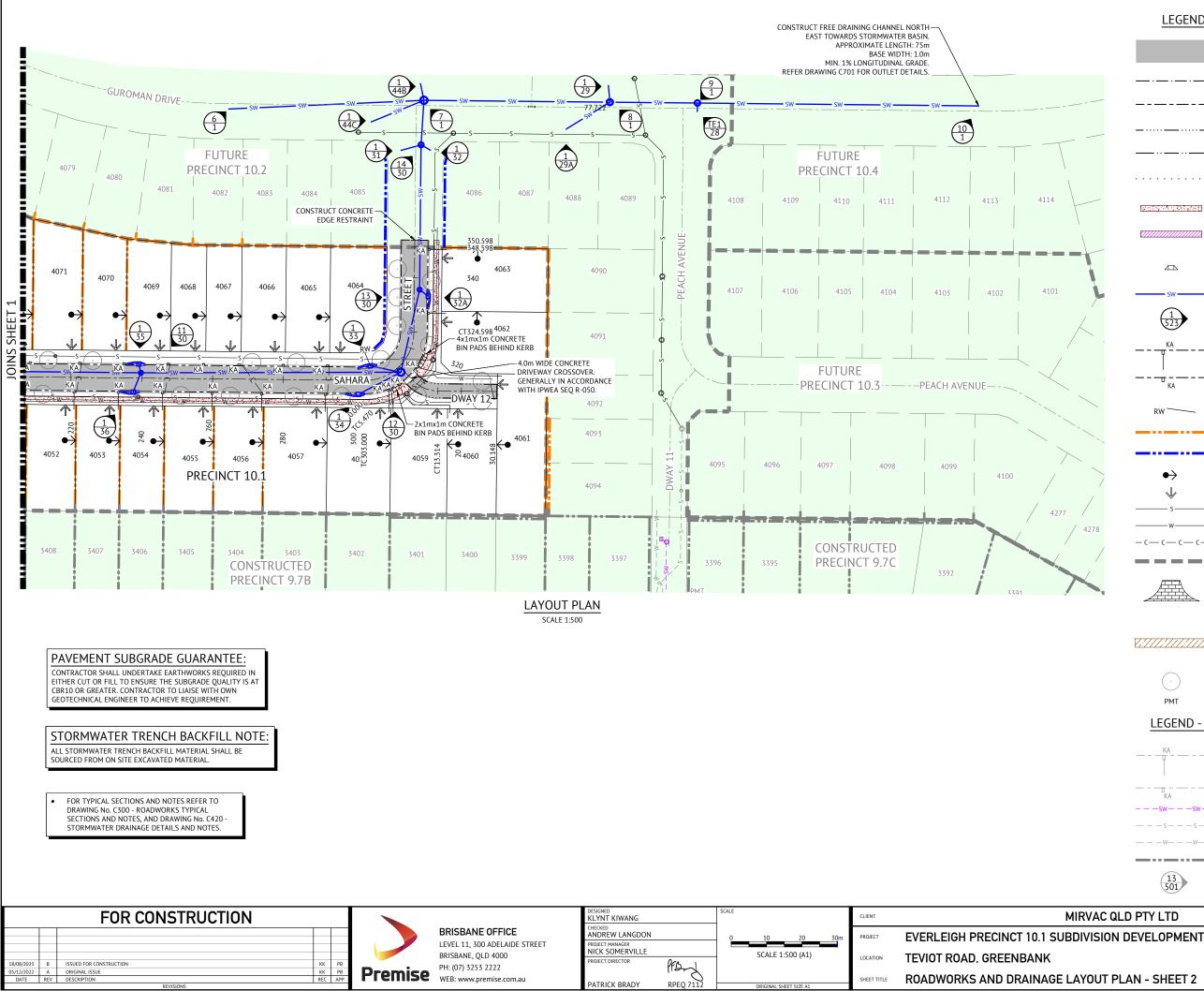
STORMWATER

BOLLARD

SEWER

WATER

RETAINING WALL


STORMWATER STRUCTURE No.

MIRVAC QLD PTY LTD

MIR-1001

C100

В

PATRICK BRADY

DATE REV DESCRIPTI

LEGEND - PROPOSED

PAVEMENT

PROPOSED IPWEA STD TYPE 'B1' KERB & CHANNEL REFER IPWEA STD DWG RS-080.

PROPOSED IPWEA TYPE 'M3' KERB & CHANNEL. REFER IPWEA STD DWG RS-080.

PROPOSED IPWEA TYPE 'ER1' EDGE RESTRAINT. REFER IPWEA STD DWG RS-080. PROPOSED IPWEA STD TYPE 'B2' KERB ONLY. REFER IPWEA STD DWG RS-080.

PROPOSED IPWEA CHANNEL 900 WIDE. REFER IPWEA STD DWG RS-080.

PROPOSED 1.5m WIDE (U.N.O.) CONCRETE FOOTPATH. REFER LCC STD DWGS.

PROPOSED CONCRETE LANDSCAPING FOOTPATH. REFER LANDSCAPING DRAWINGS FOR DETAILS.

PROPOSED KERB RAMP. REFER IPWEA STD DWG RS-090.

PROPOSED STORMWATER

PROPOSED STORMWATER STRUCTURE No.

ROOFWATER DRAINAGE KERB ADAPTORS WITH TWIN 125x75 GALVANISED RHS. REFER DETAIL ON DWG C420.

ROOFWATER DRAINAGE KERB ADAPTORS. REFER DETAIL ON DWG C420.

PROPOSED ROOFWATER HOUSE CONNECTION (150 Ø uPVC)

PROPOSED CONCRETE SLEEPER RETAINING WALL

PROPOSED CONCRETE PANEL RETAINING WALL

ZERO LOT BOUNDARY

PROPOSED FUTURE DRIVEWAY LOCATION

PROPOSED SEWER

PROPOSED WATER

STAGE BOUNDARY

DURATHEM THRESHOLD TREATMENT REFER TO URBIS EVERLEIGH LANDSCAPE MASTERPLAN - PART B (PAGE 20) FOR COLOUR AND PATTERN.

PROPOSED LANDSCAPING. CONCRETE EDGE RESTRAINT BY LANDSCAPING CONTRACTOR. CIVIL CONTRACTOR TO COORDINATE WITH LANDSCAPING CONTRACTOR TO CARRY OUT THEIR WORKS. REFER TO LANDSCAPE DRAWINGS FOR FURTHER DETAIL

TREES

PADMOUNT TRANSFORMER

LEGEND - CONSTRUCTED

ROOFWATER DRAINAGE KERB ADAPTORS WITH TWIN 125x75 GALVANISED RHS. REFER DETAIL ON DWG C420.

ROOFWATER DRAINAGE KERB ADAPTORS. REFER DETAIL ON DWG C420.

STORMWATER

SEWER

WATER

RETAINING WALL

STORMWATER STRUCTURE No.

MIRVAC QLD PTY LTD

— — — — — KA

- - - - SW - - - SW -

13 501

ROADWORKS AND DRAINAGE LAYOUT PLAN - SHEET 2

SHEET TITL

MIR-1001

C101 В

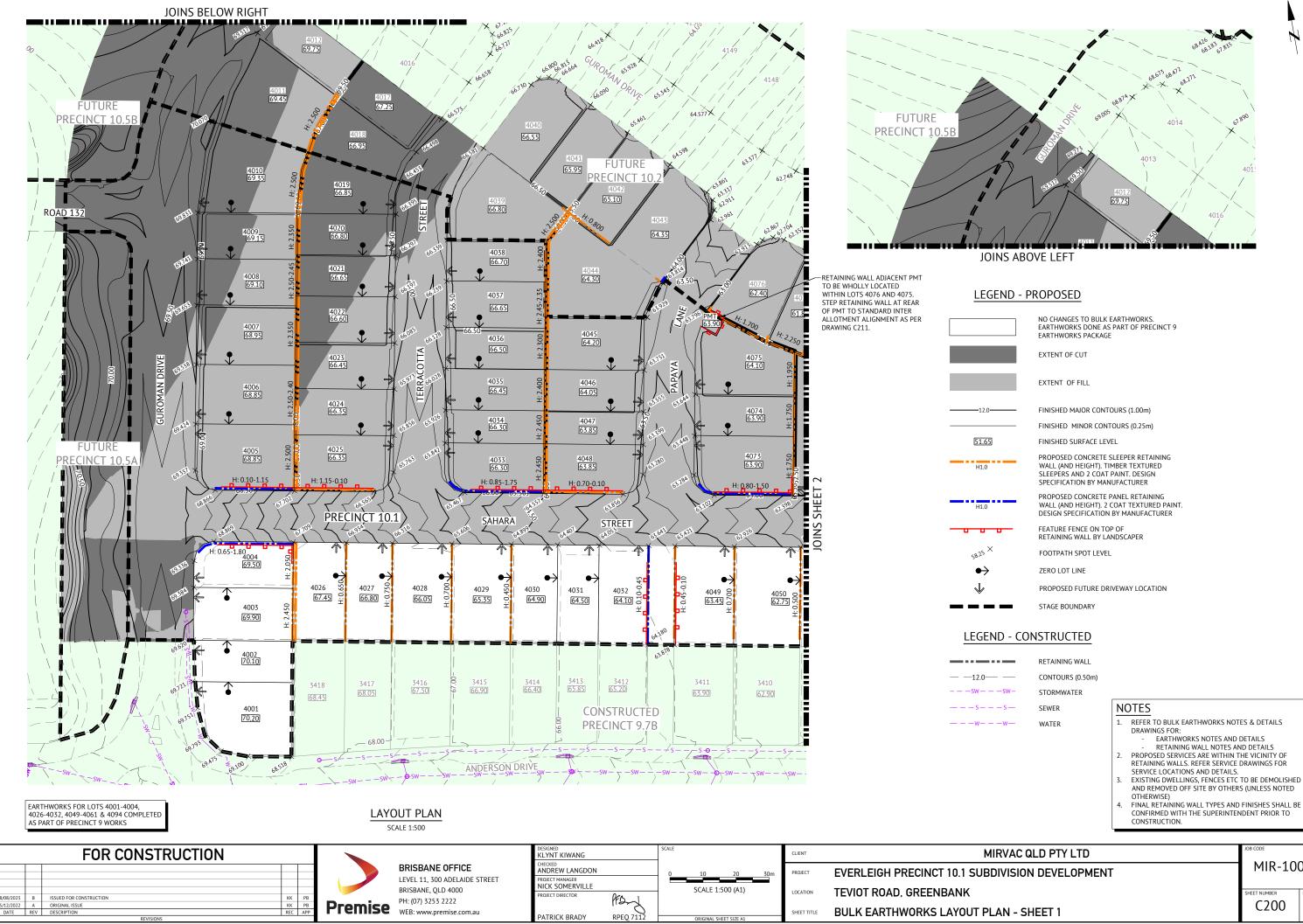
PMT

47

_ _

.

KA


RW [·]

 \bullet

- s-

_ _ _ _

PROPOSED WATER CONDUIT

- REFER TO BULK EARTHWORKS NOTES & DETAILS
- AND REMOVED OFF SITE BY OTHERS (UNLESS NOTED
- CONFIRMED WITH THE SUPERINTENDENT PRIOR TO

MIR-1001 C200 В

	FOR CONSTRUCTION			DESIGNED KLYNT KIWANG		SCALE	CLIENT	MIRVA	
				BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	CHECKED ANDREW LANGDON PROJECT MANAGER		0 <u>10 20 30</u> m	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVIS
18/08/2023 B	ISSUED FOR CONSTRUCTION	KK PB		BRISBANE, QLD 4000 PH: (07) 3253 2222	NICK SOMERVILLE PROJECT DIRECTOR	PFD	SCALE 1:500 (A1)	LOCATION	TEVIOT ROAD, GREENBANK
05/12/2022 A DATE REV	ORIGINAL ISSUE / DESCRIPTION REVISIONS	KK PB REC APP	Premise	WFB: www.premise.com.au	PATRICK BRADY	RPEQ 7112	ORIGINAL SHEET SIZE A1	SHEET TITLE	BULK EARTHWORKS LAYOUT PLAN -

AC QLD PTY LTD	JOB CODE	• •
ISION DEVELOPMENT	MIR-100	01
	SHEET NUMBER	REV
N - SHEET 2	C201	В

NOTES

- LOCATION & LEVELS OF ALL EXISTING SERVICES TO BE CONFIRMED ON SITE BY CONTRACTOR PRIOR TO THE COMMENCEMENT OF CONSTRUCTION. EARTHWORKS DRAWINGS ARE TO BE READ IN CONJUNCTION WITH EROSION
- AND SEDIMENT CONTROL LAYOUT PLANS AND EROSION AND SEDIMENT CONTROL NOTES AND DETAILS.
- ALL EARTHWORKS TO BE CARRIED OUT UNDER 'LEVEL ONE' GEOTECHNICAL CONTROL IN ACCORDANCE WITH LOCAL AUTHORITIES AND AS3798. EXCESS CUT TO BE STOCKPILED IN THE LOCATION SHOWN OR AS DIRECTED
- ON SITE
- ALL BATTERS ARE 1 IN 4 UNLESS SHOWN OTHERWISE. CONTRACTOR TO INSTALL TEMPORARY CONSTRUCTION FENCING ALONG THE FULL PERIMETER BOUNDARY INCLUDING APPROPRIATE SIGNAGE.

TESTING

THE SUPERINTENDENT MAY ORDER ADDITIONAL TESTS. REFER TO THE LOCAL AUTHORITIES SPECIFICATION FOR STANDARDS OF COMPACTION AND MATERIAL STANDARDS. FAILED TESTS WILL BE AT THE CONTRACTOR'S EXPENSE

EARTHWORKS TESTING

COMPACTION TESTS

contraction (ESTS			
LOCATION	AREA PER TEST		
FINISHED LEVEL OR ROAD SUBGRADE (IN CUT OR FILL)			
LOWEST TWO LEVELS OF EMBANKMENT (PER LAYER)	REFER TO THE		
OTHER LAYERS OF EMBANKMENT	SPECIFICATION		
PREPARED NATURAL GROUND UNDER EMBANKMENT			

QUALITY TESTS

- QUALITY TESTS OF IMPORTED MATERIAL ARE REQUIRED AS SET OUT BY I OCAL ALITHORITY
- SUBGRADE TESTS THE NUMBER AND LOCATION OF PAVEMENT SUBGRADE TESTS SHALL BE IN ACCORDANCE WITH LOGAN CITY COUNCIL SPECIFICATION REOUIREMENTS.

DUST

- NO VISIBLE DUST EMISSIONS MUST OCCUR AT THE BOUNDARIES OF THE SITE DURING EARTHWORKS AND CONSTRUCTION ACTIVITIES ON THE SITE DUST CONTROL TESTING SHALL BE CONDUCTED IN ACCORDANCE WITH AS/NZS3580.10.1:2003. DUST CONTROL SHALL COMPLY WITH THE NSW DEPARTMENT OF ENVIRONMENT AND CONSERVATION REPORT "APPROVED METHODS & GUIDANCE FOR THE MODELLNG AND ASSESSMENT OF AIR POLLUTANTS IN NSW
- THE CONTRACTOR SHALL IMPLEMENT AND MAINTAIN CONTROLS TO ACHIEVE THE REQUIREMENTS OF ITEM 1 ABOVE.

FILL MANAGEMENT

- ALL FILL MATERIAL WILL BE PLACED IN ACCORDANCE WITH THE FILL SPECIFICATION PROVIDED ON THIS SHEET OR WHERE PROVIDED THE REQUIREMENTS OF THE GEOTECHNICAL REPORT SPECIFIC TO THIS CONTRACT
- THE FILL MATERIAL WILL COMPRISE ONLY OF NATURAL EARTH AND ROCK AND SHALL BE FREE OF ALL CONTAMINATES, NOXIOUS, HAZARDOUS, DELETERIOUS AND ORGANIC MATERIAL.
- ALL SITE PREPARATION WORK SHOULD GENERALLY BE CARRIED OUT IN ACCORDANCE WITH AS3798 'GUIDELINES ON EARTHWORKS FOR COMMERCIAL AND RESIDENTIAL DEVELOPMENTS'. THE SITE SHOULD BE STRIPPED OF ANY TOPSOIL FROM CUT AND FILL AREAS,
- ROAD ALIGNMENTS AND CARPARKING AREAS, AND STOCKPILED FOR LATER USE
- PRIOR TO THE PLACEMENT OF ANY STRUCTURAL FILL THE SITE SHOULD BE PROOF ROLLED USING A MINIMUM 10 TONNE (STATIC WEIGHT) PADFOOT ROLLER. ANY LOOSE OR SOFT AREAS SHOULD BE REMOVED AND RECOMPACTED OR REPLACED USING A COMPACTED SELECT FILL.
- DEPRESSIONS FORMED BY THE REMOVAL OR VEGETATION, EXISTING STRUCTURES UNDERGROUND SERVICES FTC SHOULD HAVE ALL DISTURBED SOIL CLEANED OUT AND BE BACKFILLED WITH COMPACTED SELECT FILL MATERIAL
- ALL COMPLIANCE TESTING SHALL BE CARRIED OUT BY THE GEOTECHNICAL ENGINEER WHO WILL BE ENGAGED BY THE PRINCIPAL CONTRACTOR. ANY/ALL TESTING NECESSARY FOR GUIDANCE OR RE-TESTS WILL BE AT THE COST OF THE CONTRACTOR
- THE PLACEMENT OF FILL TO BE EXECUTED SUCH THAT TO BE FREE DRAINING AT ALL TIMES AND NOT TO BE A NUISANCE OR PONDING TO ADJOINING PROPERTY OR ROADS.
- NO DEMOLITION MATERIAL TO BE USED AS FILL MATERIAL. WHERE UNSUITABLE MATERIAL IN AREAS OF FILL IS ENCOUNTERED, THIS
- 10 WILL BE TREATED AS SET OUT IN THE EARTHWORK SPECIFICATION. ALL VEHICLES EXITING FROM THE SITE TO BE CLEAN TO PREVENT MATERIAL 11. BEING TRACKED OR DEPOSITED ON THE ADJOINING PUBLIC ROADS, REFER
 - ENVIRONMENTAL MANAGEMENT NOTES ON THE EROSION AND SEDIMENT CONTROL DRAWINGS
- SITE ACCESS TO AND ACROSS THE SITE ARE SUBJECT TO SUPERINTENDENT 12.

TOPSOIL RESPREAD REOUIREMENTS

TOPSOIL RESPREAD THICKNESS SHALL BE AS SPECIFIED BELOW IN THE FOLLOWING AREAS:

REFER TO EROSION & SEDIMENT CONTROL - STABILISATION PHASE DRAWING FOR TOPSOIL RESPREAD LOCATIONS AND THICKNESS.

TURF

- CONTRACTOR SHALL SUPPLY AND LAY TURF AS SPECIFIED IN THE FOLLOWING ARFAS
- REFER TO EROSION & SEDIMENT CONTROL STABILISATION PHASE DRAWING FOR TURF SUPPLY AND LAY AREAS.

TRENCH SPOIL

EXCESS TRENCH SPOIL MATERIAL GENERATED BY THIS CONTRACT SHALL BE PLACED EITHER WITHIN THE FILL ZONE NOMINATED ON THE EARTHWORKS DRAWINGS OR WITHIN A FILL ZONE NOMINATED BY THE SUPERINTENDENT THAT SHALL BE CONFIRMED PRIOR TO CONSTRUCTION COMMENCEMENT. FILL TO BE PLACED UNDER LEVEL 1 SUPERVISION AND IN ACCORDANCE WITH THE EARTHWORKS SPECIFICATION.

TRENCH BACKFILL

CBR15 STORMWATER TRENCH BACKFILL MATERIAL SHALL BE SOURCED FROM ON SITE EXCAVATED MATERIAL

EXCAVATION IN ROCK

CONTRACT SHALL INCLUDE TREATING, SIZING, CONDITIONING AND PROCESSING ALL TYPES OF ROCK IN ALL EXCAVATIONS. PROCESSING TO BE COMPLETED TO ENSURE THAT FILL SPECIFICATION AND LEVEL ONE CERTIFICATION IS ACHIEVED.

EVERLEIGH EARTHWORKS TOLERANCE TABLE

ITEM	TOLERANCE
EARTHWORKS IN ALLOTMENTS AND VERGES ^(a)	EWL or FSL +/- 50mm
CUT BATTERS (OTHER THAN IN LOTS)	EWL or FSL +/- 150mm ^(b)
FILL BATTERS (OTHER THAN IN LOTS)	EWL or FSL +/- 300mm ^(b)
EARTHWORKS IN PARKS	EWL or FSL +/- 50mm

(a) TOLERANCE IS -0mm / +50mm WHERE ADJACENT DRAINAGE FLEMENT (b) MEASURED FROM THE AVERAGE SLOPE PLANE.

TOLERANCE NOTES

- EARTHWORKS LEVEL (EWL) IS 100mm BELOW FINISHED SURFACE LEVEL (FSL) ON ALLOTMENTS (TOPSOIL RESPREAD THICKNESS).
- FINISHED SURFACE LEVEL (FSL) IS TOP OF TURF / STABILISED TOPSOIL
- ROADWORKS SUBGRADE, PAVEMENT, ASPHALT CONSTRUCTION LEVEL TOLERANCES AS PER LCC PSP No. 5.
- STORMWATER DRAINAGE CONSTRUCTION LEVEL TOLERANCES AS PER LCC
- SEWER AND WATER RETICULATION CONSTRUCTION LEVEL TOLERANCES AS 5. PER SEQ D&C CODE.

DISPERSIVE SOILS MANAGEMENT NOTES

- GYPSUM TREATMENT FOR DISPERSIVE SOILS SHALL BE UNDERTAKEN IN ACCORDANCE WITH THE EVERLEIGH DISPERSIVE SOIL MANAGEMENT PLAN (REPORT #GE20.042.R1). AREAS THAT REQUIRED TREATMENT REGARDLESS OF NOMINATING ON PLANS ARE:
 - ALL SERVICE TRENCHES BELOW AND ABOVE BEDDING MATERIAL, INCLUDING STRUCTURES, E.G. MANHOLES. UNDER AND SURROUNDING STORMWATER HEADWALLS TURF/LANDSCAPED AREAS SUBJECT TO DIRECTED WATER FLOWS.
 - TREATMENT AT FINISHED EARTHWORKS PRIOR TO TOPSOIL
 - PLACEMENT/FINISH LANDSCAPE SURFACE
 - TURF/LANDSCAPED AREAS SUBJECT TO WATER PONDING. TREATMENT AT FINISHED EARTHWORKS PRIOR TO TOPSOIL PLACEMENT/FINISH LANDSCAPE SURFACE.
- TREATMENT TO INSITU/UNTOUCHED ROCK IS NOT REQUIRED. STABILISATION OF DISTURBED AREAS AND MANAGEMENT OF EROSION AND SEDIMENT SHALL BE UNDERTAKEN IN ACCORDANCE WITH THE EROSION AND SEDIMENT CONTROL PLANS IN THIS DRAWING SET. THE CONTRACTOR IS TO
- REVIEW THE PROPOSED DRAINS AND DETERMINE IF TREATMENT TO ANY DIVERSION DRAIN IS REOUIRED BASED ON TIME IN USE ON DURING WORKS. TREATMENT TO BE IN ACCORDANCE WITH THE DSMP. CONTRACTOR MUST CONSTRUCT AND ESTABLISH THE EROSION AND
- SEDIMENT CONTROL DEVICES, CONSTRUCTION WATER HOLDING DAM AND HES BASIN PRIOR TO COMMENCING EARTHWORKS OPERATION. TREATMENT TO THE SURFACE OF ANY WATER RETAINING BODY SHALL BE IN ACCORDANCE WITH THE DSMP
- ALL DISTURBED AREAS SHALL BE STABILISED AS SOON AS PRACTICABLE (BUT NOT MORE THAN 10 DAYS) FOLLOWING FINALISATION OF LEVELS STABILISATION TO BE IN ACCORDANCE WITH EROSION & SEDIMENT CONTROL - STABILISATION PHASE

TOPSOIL AMELIORATION

ONSITE STRIPPED TOPSOIL SHALL BE AMELIORATED PRIOR TO RESPREAD. THE FOLLOWING AMELIORATION SPECIFICATIONS SHALL APPLY:

A-GRADE QUALITY TOPSOIL AMELIORATION: - SCREEN STRIPPED TOPSOIL

- ON-SITE COMPOST INCORPORATION (0.15kg/m³ OF TOPSOIL)
 DOLOMITE (15kg/m³ OF TOPSOIL) GRANULAR WETTING AGENT (0.5kg/m³ OF TOPSOIL)
- FERTILISER (0.4kg/m³ OF TOPSOIL)

B-GRADE OUALITY TOPSOIL AMELIORATION:

SCREEN STRIPPED TOPSOIL - DOLOMITE (15kg/m³ OF TOPSOIL) - GRANULAR WETTING AGENT (0.5kg/m³ OF TOPSOIL) FERTILISER (0.4kg/m³ OF TOPSOIL)

ROCK TREATMENT IN ALLOTMENTS

WHERE ALLOTMENTS ARE LOCATED IN CUT, THE CONTRACTOR SHALL OVER-EXCAVATE A MINIMUM 500mm DEPTH BELOW DESIGN EARTHWORKS LEVEL (EWL), AND RECOMPACT IN ACCORDANCE WITH THE EARTHWORKS SPECIFICATION AND LEVEL ONE SUPERVISION

ALL CUT LOTS WHICH ARE NOT LOCATED IN ROCK MUST ACHIEVE 100kPa BEARING CAPACITY WHERE THIS CAN'T BE ACHIEVED THE CONTRACTOR SHALL RECTIFY THE SUBGRADE IN ACCORDANCE WITH THE EARTHWORKS SPECIFICATION TO ACHIEVE A 100kPa BEARING CAPACITY

ROCK TREATMENT IN VERGES

WHERE ROAD RESERVES ARE LOCATED IN CUT, THE CONTRACTOR SHALL OVER-EXCAVATE A MINIMUM 1000mm DEPTH BELOW DESIGN EARTHWORKS LEVEL (EWL) AND RECOMPACT IN ACCORDANCE WITH THE EARTHWORKS SPECIFICATION AND LEVEL ONE SUPERVISION

FARTHWORKS SPECIFICATION

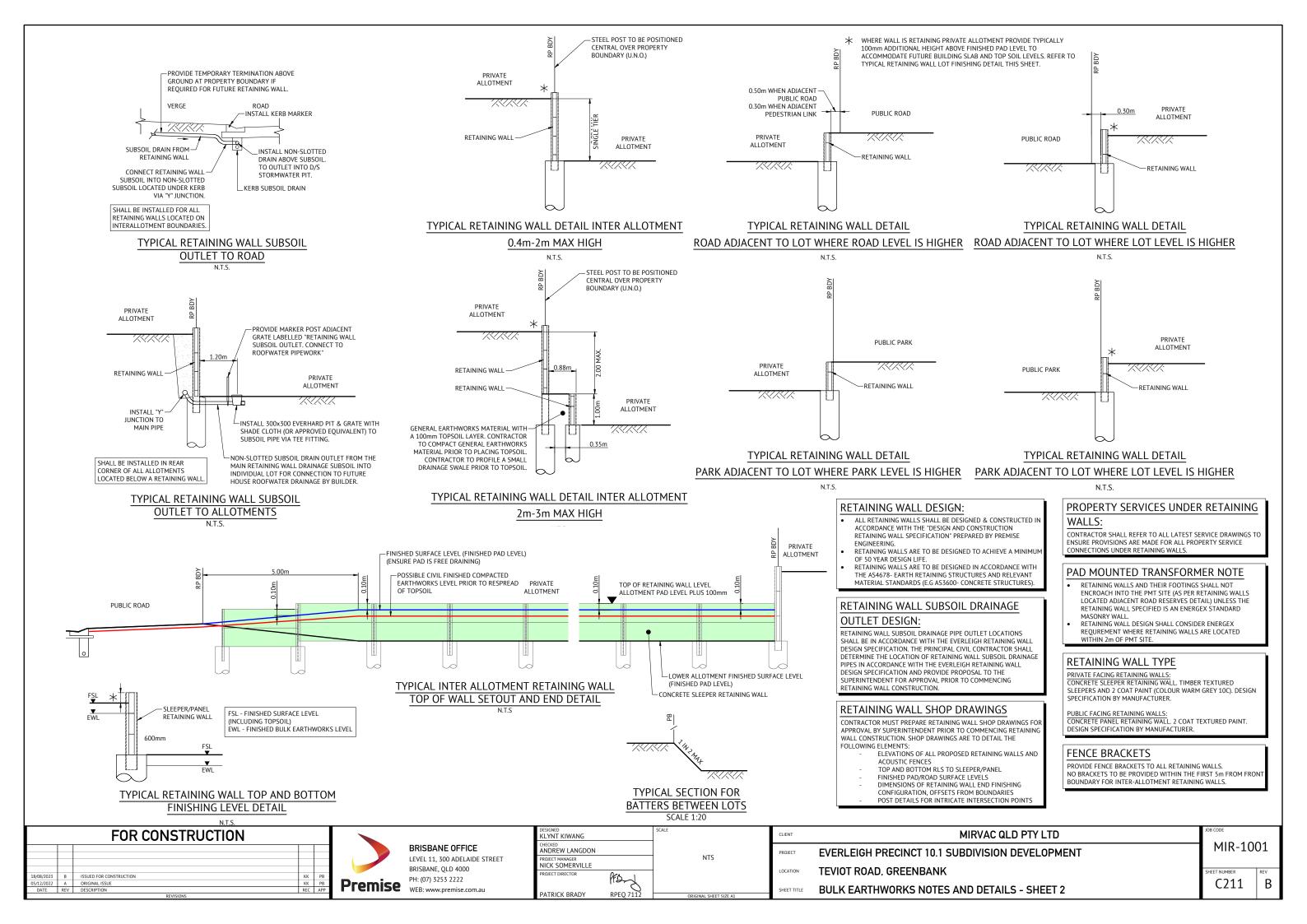
SPECIFICATION		DEPTH R	PAVEMENT	TRENCH			
	0.0 - 0.6 0.6 - 3.00 3.00 - 5.00 > 5.00				SUBGRADE	BACKFILL	
CBR %	-	-	-	-	10	15	
LAYER THICKNESS (mm)	300	300	300	300	BETWEEN SUBGRADE AND 0.3m BELOW	300	
MAXIMUM PARTICLE SIZE (mm)	200	500	500	500	200	200	
% PASSING 37.5mm	80% MIN	REFER NOTES AND KEY OUTCOMES	REFER NOTES AND KEY OUTCOMES	REFER NOTES AND KEY OUTCOMES	REFER NOTES AND KEY OUTCOMES	REFER NOTES AND KEY OUTCOMES	
% PASSING 0.075mm	30% MIN	REFER NOTES	REFER NOTES	REFER NOTES	REFER NOTES	REFER NOTES AND AS3798	
COMPACTION	95% STD	95% STD	95% STD	95% STD	100% STD	95% MOD IN ROADS AND 95% STD OUTSIDE ROADS	
MOISTURE	+/- 2% OMC	+/- 2% OMC	+/- 2% OMC	+/- 2% OMC	60% - 90% OF OMC	+/- 2% OMC	

1. OMC - OPTIMUM MOISTURE CONTENT

2. LAYER OF THICKNESS IS LIMITED TO 300mm TO ALLOW IDENTIFICATION OF LARGER PARTICLES AND ALLOW EVERY CHANCE OF BREAK DOWN IN FILLING OR REMOVAL

EY OUTCOMES FOR EARTHWORKS OPERATIONS

- 1. DELIVER RESIDENTIAL LOTS WITH FAVOURABLE LOT CLASSIFICATIONS I.E NO P CLASSIFICATIONS 2. FILL THICKNESS DOES NOT VARY MORE THAN 2m OVER A DISTANCE OF 10m
- 3. CONSTRUCT FILL AND LIMIT LONG TERM CREEP SETTLEMENTS TO WITHIN 0.5% TO 1.0% OF THE FILL THICKNESS 4. BUILDING PLATFORM THAT ALLOWS BUILDERS TO CONSTRUCT SLAB ON GROUND RAFTS USING LIGHT EARTHMOVING EQUIPMENT
- 5. MATERIAL WON FROM CUTS AND USED IN FILL WITH REQUIRE CUTS IN ROCK AS WELL AS BLENDED WITH
- CUTS IN FINER MATERIALS SUCH AS SANDS AND CLAYS
 CREATING A FILL PLATFORM THAT IS ABLE TO BE TESTED IN ACCORDANCE WITH AS3798 AND AS1289


FOR CONSTRUCTION

8/08/2023	В	ISSUED FOR CONSTRUCTION	KK	PB
5/12/2022	Α	ORIGINAL ISSUE	KK	PB
DATE	REV	DESCRIPTION	REC	APP

BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 PH: (07) 3253 2222 Premise WEB: www.premise.com.au

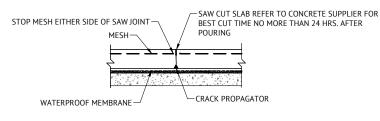
MIRVA	CLIENT	SCALE		ESIGNED
	PROJECT			HECKED
				ROJECT MANAGER
TEVIOT ROAD, GREENBANK	LOCATION		PED	ROJECT DIRECTOR
BULK EARTHWORKS NOTES AND DE	SHEET TITLE			
		ORIGINAL SHEET SIZE A1	RPEQ 7112	ATRICK BRADY

3. TREATMENT OF ROCK TO SIZES ABOVE SHOULD BE CARRIED OUT IN CUT PRIOR TO LOADING TO FILL AREAS. TREATED ROCK TO BE APPROVED BY GITA PRIOR TO TRANSPORTING. 4. UPPER 0.6m, (PARTICULARLY IN AREAS OF DEEP FILL), OF THE FILL PROFILE TO BE RELATIVELY IMPERMEABLE HENCE INCREASE IN FINES COMPONENT. 5.PROOF ROLL TESTING ON EACH COMPACTED LAYER USING RUBBER WHEELED PLANT SUCH AS LOADED ADT'S OR LOADED SCRAPERS. UNFAVOURABLE DEFORMATION OF THE COMPACTED SURFACE UNDER LOAD OF ADT'S OR SCRAPERS WILL REQUIRE REPAIR PRIOR TO ADDITIONAL PLACEMENT. 6. MECHANICAL INTERLOCK METHODOLOGY IS NOT APPROPRIATE DUE TO POOR DURABILITY OF SITE WON SANDSTONE. FILL COMPOSITION IS REQUIRED TO INCLUDE AN APPROPRIATE SAND GRAVEL AND FINES COMPONENT CONFORMING TO THE REQUIREMENTS OF AS798. C QLD PTY LTD MIR-1001 SION DEVELOPMENT C210 В TAILS - SHEET 1

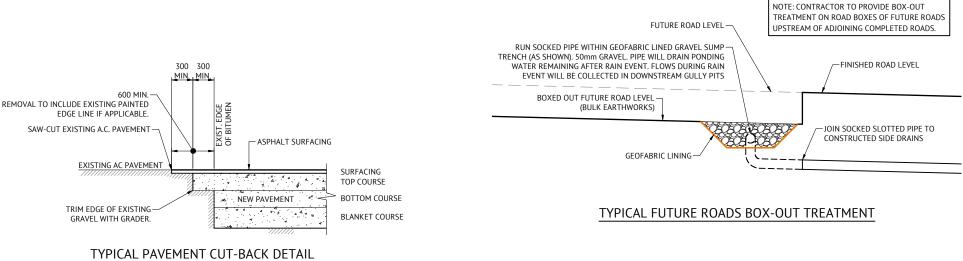
STREET TREE / PLANTING AREA. CONTRACTOR TO ENSURE AREA IS FREE OF ROCK UP TO A DEPTH OF 1.5M BELOW DESIGN FSL (I.E. ENSURE AREA IS EASY DIGGING FOR THE INSTALLATION OF TREES AND PLANTING). CONTRACTOR TO ALSO ENSURE THESE AREAS ARE CONNECTED INTO THE NEAREST STORMWATER STRUCTURE AND MADE FREE DRAINING VIA SLOTTED AGI PIPE.

ALLOTMENT PREPARATION REQUIREMENT:

CONTRACTOR SHALL ENSURE THAT ALL ALLOTMENTS WHERE LOCATED IN CUT WITHIN ROCK, SHALL BE OVER-EXCAVATED A MINIMUM 500mm DEPTH BELOW DESIGN EARTHWORKS LEVEL AND RECOMPACTED TO

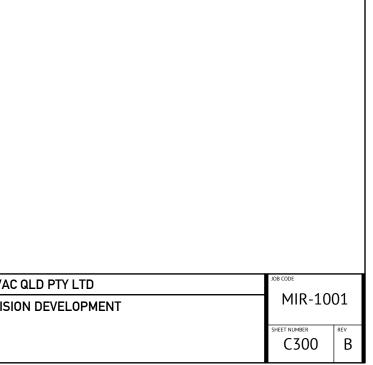

AC QLD PTY LTD	JOB CODE	
SION DEVELOPMENT	MIR-100	01
	SHEET NUMBER	REV
REPARATION DETAILS	C220	В

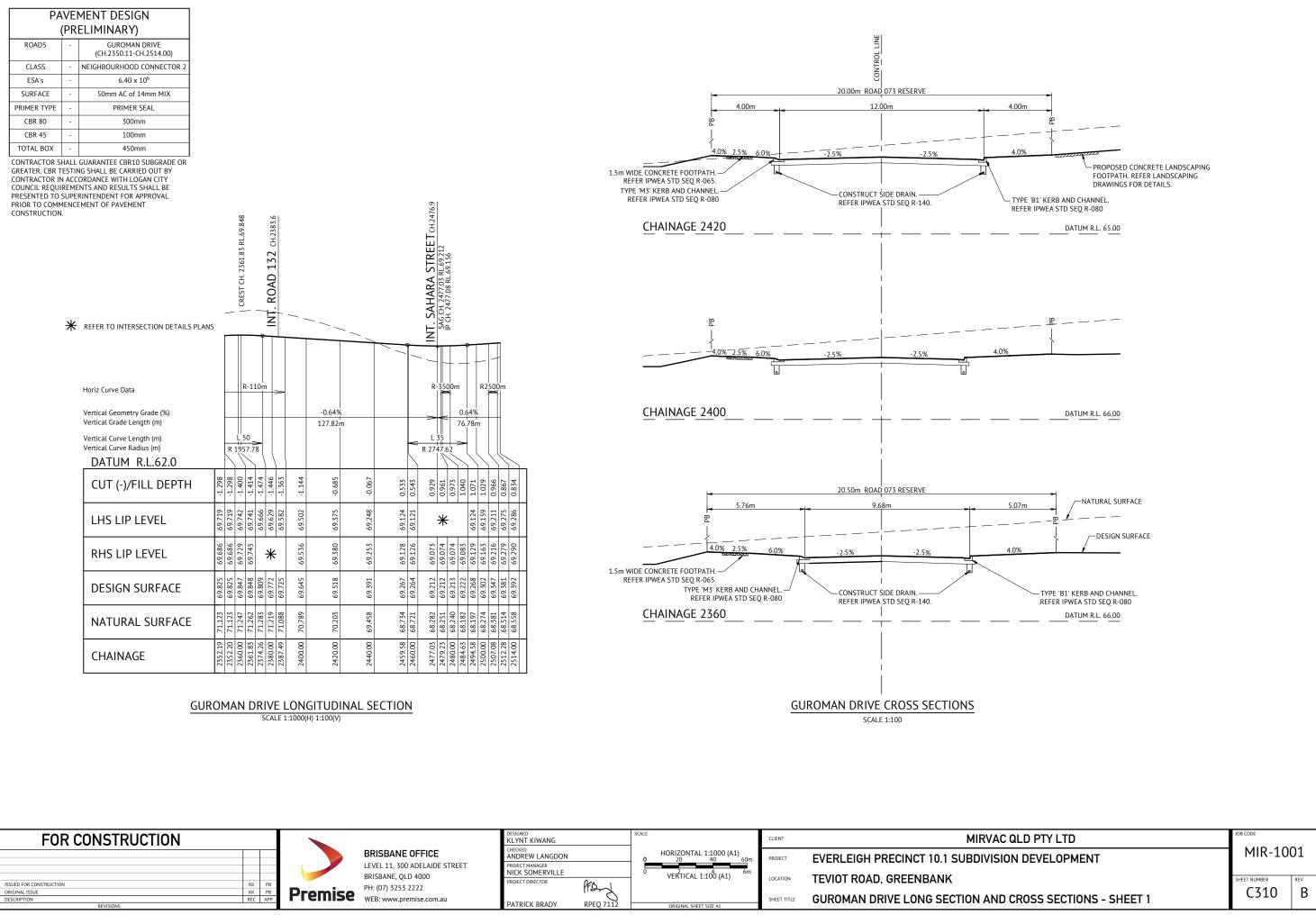
NOTES

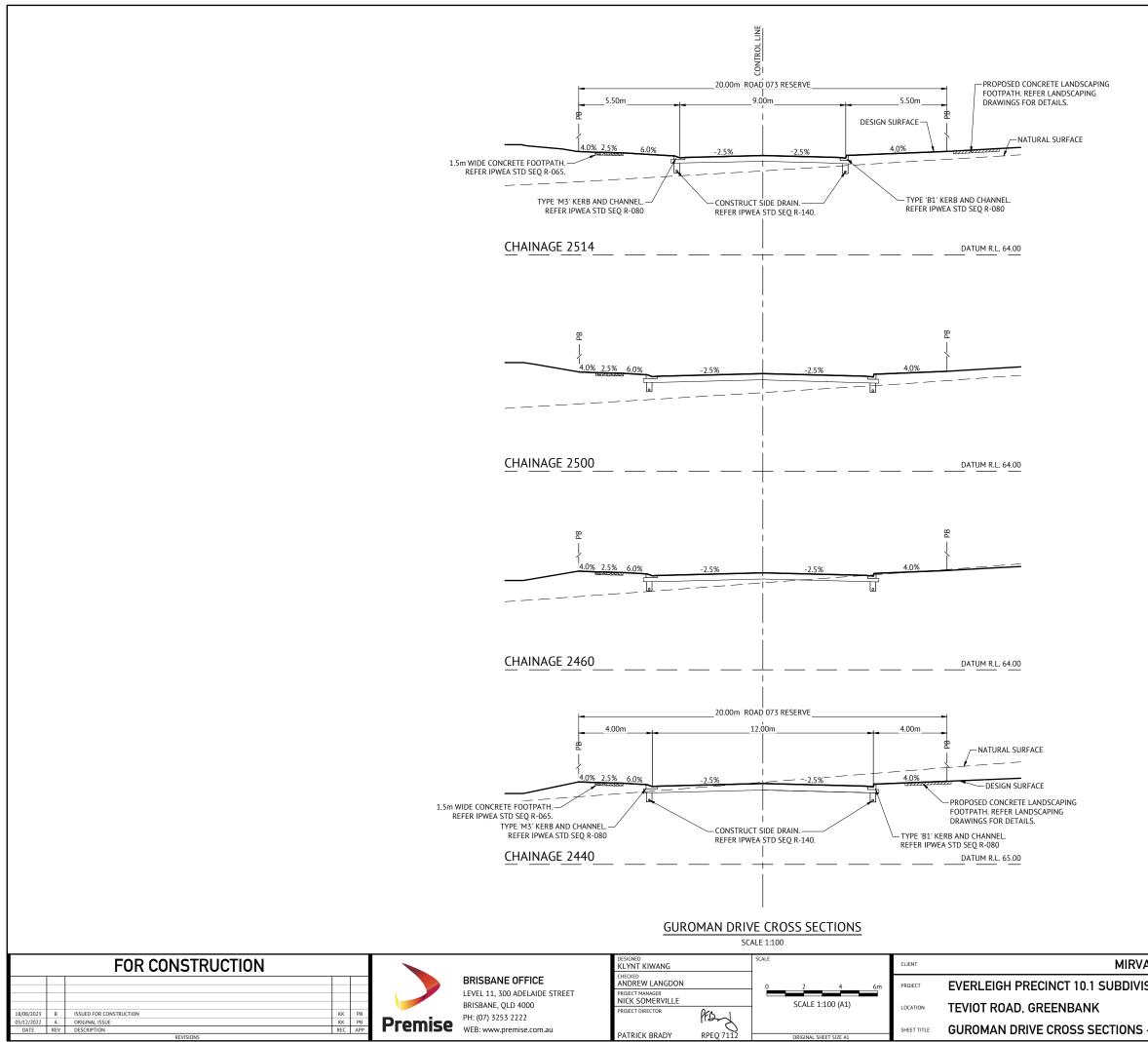

- 1. ALL WORK IS TO BE CARRIED OUT IN ACCORDANCE WITH LOGAN CITY COUNCIL STANDARD DRAWINGS AND METHODS (U.N.O.).
- NOTWITHSTANDING THE LIMITS OF CUTTING AND FILLING SHOWN ON THE DRAWINGS, THE ACTUAL 2. LIMITS SHALL BE DETERMINED ON SITE BY THE SUPERINTENDENT DURING CONSTRUCTION AND SIMILARLY THE FINISHED SURFACE CONTOURS MAY BE ADJUSTED BY WRITTEN DIRECTION OF THE
- SUPERINTENDENT DURING CONSTRUCTION. THE CONTRACTOR IS TO ASCERTAIN THE EXACT LOCATION OF ALL EXISTING SERVICES PRIOR TO 3. COMMENCEMENT OF CONSTRUCTION AND SHALL BE RESPONSIBLE FOR THE COST OF RECTIFICATION OF ANY DAMAGES TO EXISTING SERVICES WHICH MAY OCCUR. THE LOCATION OF EXISTING SERVICES
- SHOWN ON THESE DRAWINGS ARE APPROXIMATE ONLY. SUBGRADE TEST RESULTS TO BE FORWARDED TO SUPERINTENDENT FOR DETERMINATION OF BOX 4. DEPTHS PRIOR TO EXCAVATION. TESTS SHALL INCLUDE SOAKED CBR AND/OR OTHER TESTS AS REQUESTED BY THE SUPERINTENDENT.
- ALLOTMENT FILLING TO BE COMPACTED TO 95% (min) OF THE R.D.D. (AS 1289 TESTS E1.1, E4.1). LEVELS AND SETOUT INFORMATION FOR KERB AND CHANNEL CONSTRUCTION IS GIVEN TO LIP OF KERB.
- LEVELS AND GRADIENTS AT JUNCTIONS WITH EXISTING WORKS MAY BE VARIED AS APPROVED BY THE SUPERINTENDENT TO ACHIEVE SATISFACTORY CONNECTION TO THE EXISTING WORKS.
- SIDE DRAINS AND MITRE DRAINS TO BE CONSTRUCTED ADJACENT TO ALL KERB AND CHANNEL
- PROVIDE FLUSH POINTS TO SUBSOIL DRAINS, LOCATIONS TO BE CONFIRMED ON SITE. ALL STORMWATER PIPES SHALL BE CLASS '2' (UNO) R.C. PIPES UNLESS AN ALTERNATIVE IS APPROVED 10.
- BY THE SUPERINTENDENT PRIOR TO CONSTRUCTIÓN. ALL PIPES ARE 375mm DIAMETER U.N.O. GULLIES AND GULLY GRATES SHALL BE TO STD. DRGs BSD-8051 BSD-8059. 11
- KACEY GALV. STEEL KERB ADAPTORS ARE TO BE INSTALLED TO THE REQUIREMENTS OF THE LOCAL COUNCILS STANDARD DRAWINGS AND SPECIFICATIONS.
- 13. ALL LOTS SHOWN BOXED TO HAVE ROOFWATER FOOTPATH CROSSINGS TO KERB. CROSSINGS ARE TO BE 88.9 DIA. GALV. CHS.TO KACEY KERB ADAPTOR.
- 14. ALL TEMPORARY ROOFWATER OUTLETS TO BE EXCAVATED AT 1 IN 200 TO NATURAL SURFACE. 15. ROOFWATER PITS ARE TO BE 600mm DIAMETER FOR DEPTHS LESS THAN 750mm, 900mm DIAMETER FOR DEPTHS BETWEEN 750mm AND 1500mm DEEP AND 1050mm DIAMETER FOR DEPTHS GREATER THAN 1500mm
- ALL ROOFWATER PIPES CROSSING CONCRETE FOOTPATHS ARE TO BE INSTALLED PRIOR TO CONSTRUCTION OF CONCRETE FOOTPATHS. 16.
- 17. HAZARD MARKERS (D4-4A) TO BE PLACED AT THE END OF NEW WORKS AS DIRECTED BY SUPERINTENDENT
- 18. SITE CBR VALUE AND PAVEMENT DESIGN AND DEPTHS TO BE VERIFIED WITH CBR TESTS PRIOR TO CONSTRUCTION
- 19. LOCATION & LEVELS OF ALL EXISTING SERVICES TO BE CONFIRMED ON SITE BY CONTRACTOR PRIOR TO THE COMMENCEMENT OF CONSTRUCTION.
- 20. TO BE READ IN CONJUNCTION WITH ALL STORMWATER DRAINAGE LAYOUT PLANS & ROADWORKS DETAILS.

ROADWORKS NOTES

- 1. GEOTECHNICAL TESTING FOR PAVEMENT CONSTRUCTION IS TO BE CARRIED OUT IN ACCORDANCE WITH THE PROJECT SPECIFICATION. TEST CERTIFICATES ARE TO BE PREPARED BY A REGISTERED N.A.T.A. LABORATORY AT THE CONTRACTORS COST AND SHALL BE PROVIDED TO THE ENGINEER PROGRESSIVELY THROUGH THE WORKS. THE CONTRACTOR IS TO NOTIFY THE ENGINEER OF ANY NON-CONFORMANCES. ALL NON CONFORMING WORK IS TO BE RECTIFIED AS DIRECTED BY THE ENGINEER. FULL DEPTH PAVEMENT CONSTRUCTION SHALL EXTEND BEHIND ALL KERB AND KERB AND CHANNEL FOR
- 2. A DISTANCE WHICH IS THE GREATER OF 150mm FROM THE BACK OF KERB OR ACROSS TO THE OUTER LIMIT OF SIDE DRAIN FILTER MATERIAL.
- TRANSITION KERB AND CHANNEL TO BARRIER KERB SMOOTHLY OVER MIN. 1.0m LENGTH. PAVEMENT THICKNESSES NOMINATED ON THESE DRAWINGS ARE PROVISIONAL ONLY AND MAY BE VARIED BY THE SUPERINTENDENT SUBJECT TO INSITU PAVEMENT SUBGRADE TESTING, PAVEMENT SUBGRADE TESTING, PAVEMENT SUBGRADES ARE TO BE INITIALLY CONSTRUCTED TO THE UNDERSIDE OF THE NOMINATED LOWER SUBBASE COURSE WITHIN FILL AREAS, AND TO THE UNDERSIDE OF THE NOMINATED UPPER SUBBASE COURSE WITHIN CUT AREAS. INSITU SUBGRADE CBR TESTING AS SPECIFIED FOR PAVEMENT DESIGN VERIFICATION IS TO BE CARRIED OUT AT THESE LEVELS.
- REPAIR ANY DAMAGE TO EXISTING KERB AND CHANNEL FOOTPATH OR ROADWAY (INCLUDING REMOVAL 5 OF CONCRETE SLURRY FROM FOOTPATHS, ROADS, KERB AND CHANNEL AND STORMWATER GULLIES AND SIDEDRAINS) THAT MAY OCCUR DURING ANY WORKS CARRIED OUT.




SAWCUT JOINT (S.J.)

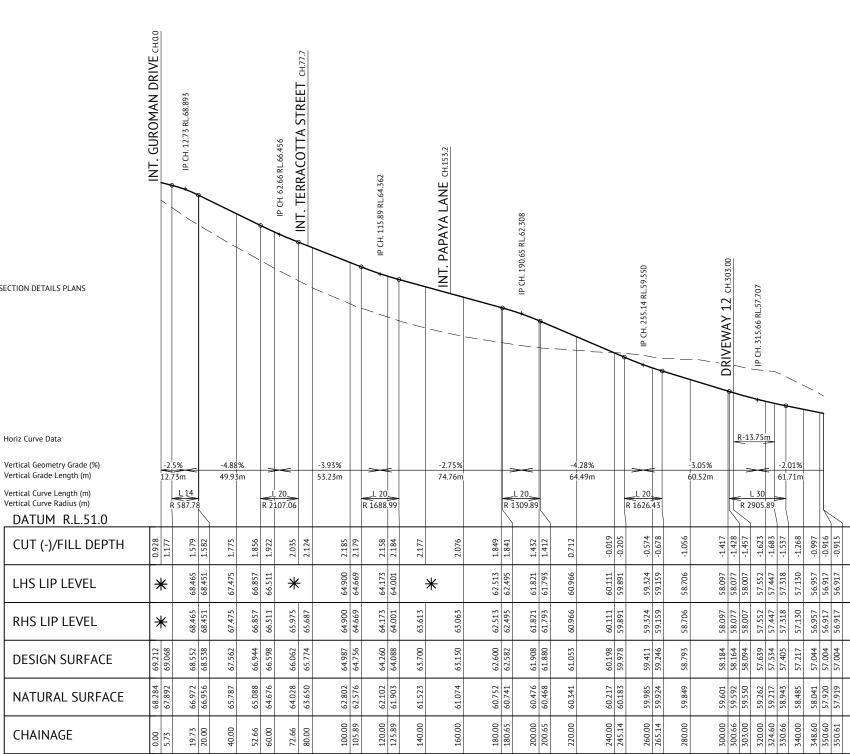

N.T.S

FOR CONSTRUCTION						DESIGNED KLYNT KIWANG		SCALE	CL	CLIENT	MIRV
					BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	CHECKED ANDREW LANGDON PROJECT MANAGER		0 0.4 0.8 1.	.2m PF	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVI
18/08/2023 B	ISSUED FOR CONSTRUCTION	ĸĸ	PR		BRISBANE, QLD 4000	NICK SOMERVILLE PROJECT DIRECTOR	DCA I	SCALE 1:20 (A1)	LC	OCATION	TEVIOT ROAD, GREENBANK
05/12/2022 A DATE REV	DISCRETENT SUE	KK REC A	PB APP	Premise	PH: (07) 3253 2222 WEB: www.premise.com.au		PFD-J		SF	SHEET TITLE	ROADWORKS NOTES AND DETAILS
	REVISIONS				·	PATRICK BRADY	RPEQ 7112	ORIGINAL SHEET SIZE A1			

		FOR CONSTRUCTION					DESIGNED KLYNT KIWANG		SCALE		CLIENT	MIRVA
						BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	CHECKED ANDREW LANGDON PROJECT MANAGER		0	HORIZONTAL 1:1000 (A1)	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVIS
18/08/2023	B	ISSUED FOR CONSTRUCTION	ĸĸ	PR		BRISBANE, QLD 4000	NICK SOMERVILLE	OCA I	0	VERTICAL 1:100 (A1) 6m	LOCATION	TEVIOT ROAD, GREENBANK
05/12/2022 DATE	A REV	ORIGINAL ISSUE DESCRIPTION	KK	PB	Premise	PH: (07) 3253 2222 WEB: www.premise.com.au		RPEO 7112			SHEET TITLE	GUROMAN DRIVE LONG SECTION AN
		REVISIONS					PATRICK BRADY	RPEQ / 112		ORIGINAL SHEET SIZE A1		

AC QLD PTY LTD	JOB CODE				
ISION DEVELOPMENT	MIR-1001				
	SHEET NUMBER	REV			
5 - SHEET 2	C311	В			

PAVEMENT DESIGN (PRELIMINARY)


(
	ROADS	-	SAHARA STREET (CH.0.00-CH.5.73)					
	CLASS	-	NEIGHBOURHOOD CONNECTOR 2					
	ESA's	-	6.40 x 10 ⁶					
	SURFACE	-	50mm AC of 14mm MIX					
	PRIMER TYPE	-	PRIMER SEAL					
	CBR 80	-	300mm					
	CBR 45	-	100mm					
	TOTAL BOX	-	450mm					

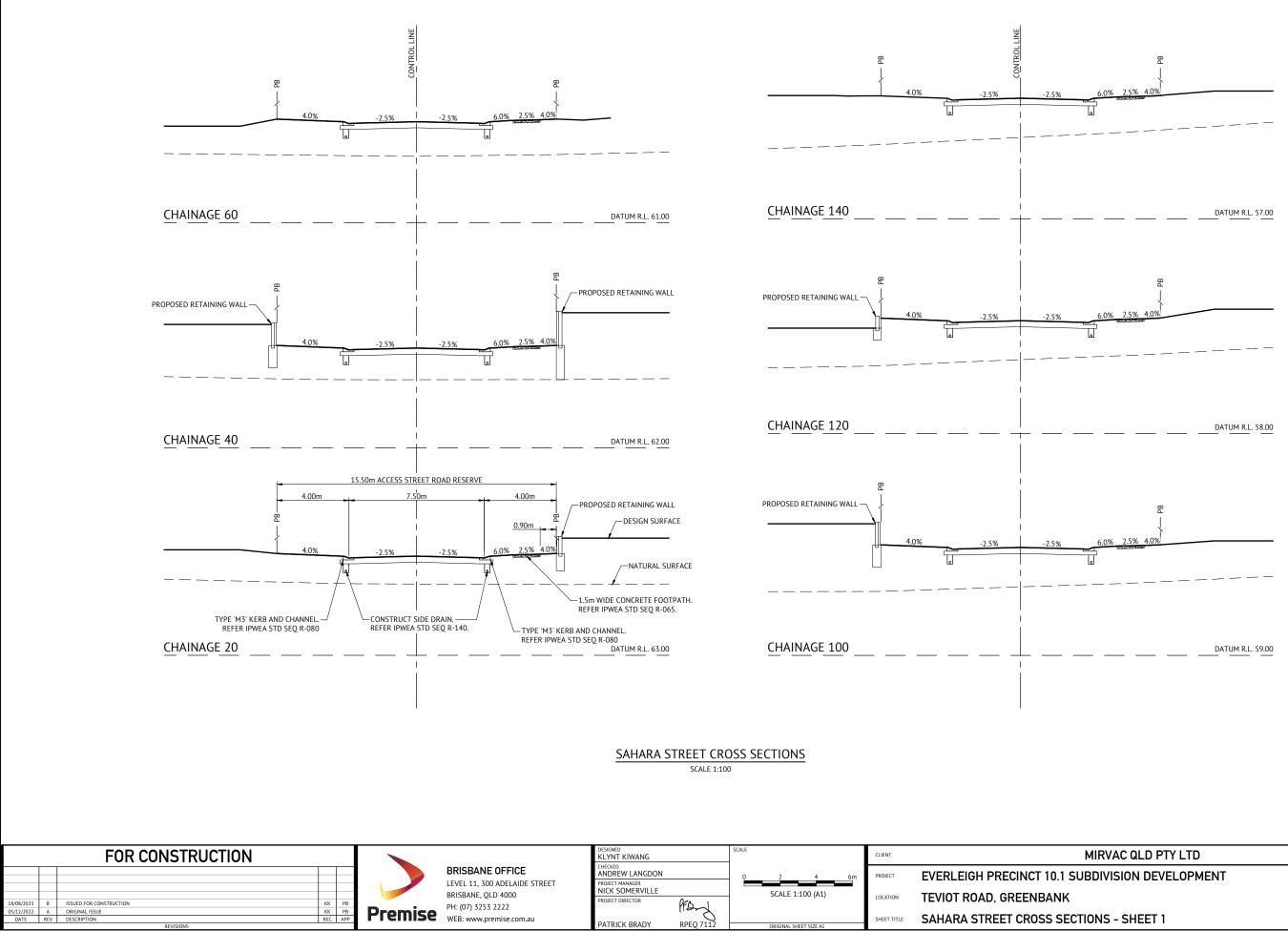
CONTRACTOR SHALL GUARANTEE CBR10 SUBGRADE OR GREATER. CBR TESTING SHALL BE CARRIED OUT BY CONTRACTOR IN ACCORDANCE WITH LOGAN CITY COUNCIL REQUIREMENTS AND RESULTS SHALL BE PRESENTED TO SUPERINTENDENT FOR APPROVAL PRIOR TO COMMENCEMENT OF PAVEMENT CONSTRUCTION.

PAVEMENT DESIGN (PRELIMINARY)								
ROADS	-	SAHARA STREET (CH.5.73-CH.350.60)						
CLASS	-	ACCESS STREET (TYPICAL)						
ESA's	-	5.90 x 10 ⁵						
SURFACE	-	35mm AC of 10mm MIX						
RIMER TYPE	-	PRIME						
CBR 80	-	150mm						
CBR 45	-	150mm						
TOTAL BOX	-	335mm						

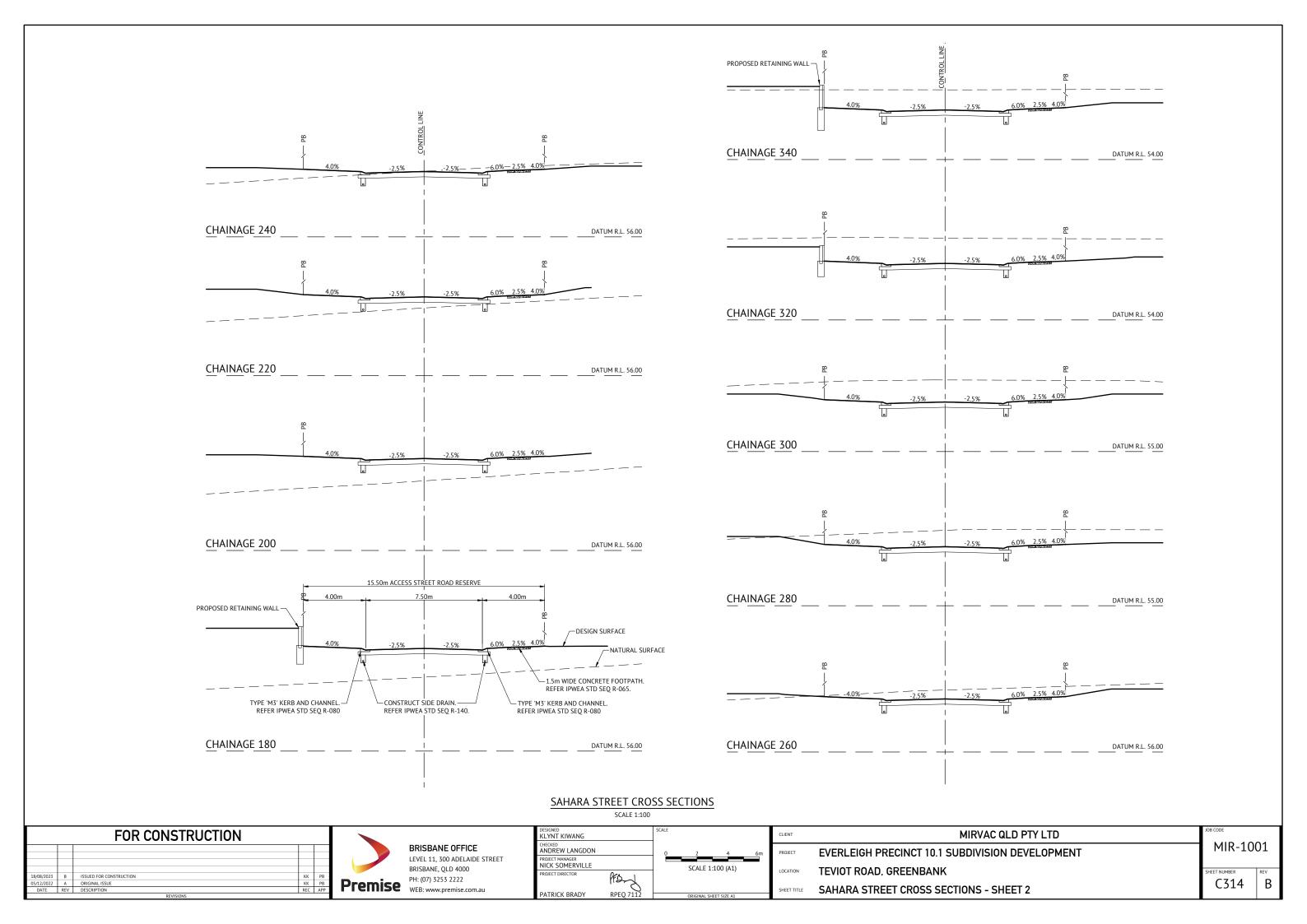
CONTRACTOR SHALL GUARANTEE CBR10 SUBGRADE OR GREATER. CBR TESTING SHALL BE CARRIED OUT BY CONTRACTOR IN ACCORDANCE WITH LOGAN CITY COUNCIL REQUIREMENTS AND RESULTS SHALL BE PRESENTED TO SUPERINTENDENT FOR APPROVAL PRIOR TO COMMENCEMENT OF PAVEMENT CONSTRUCTION.

★ REFER TO INTERSECTION DETAILS PLANS

SAHARA STREET LONGITUDINAL SECTION

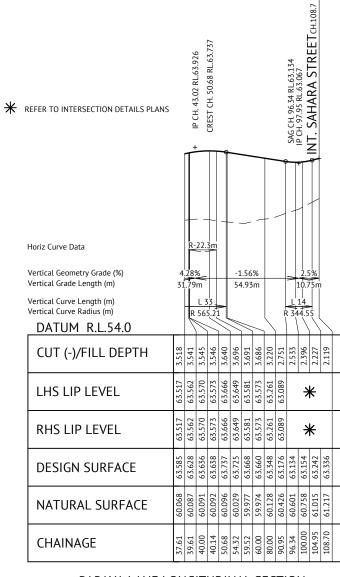

SCALE 1:1000(H) 1:100(V)

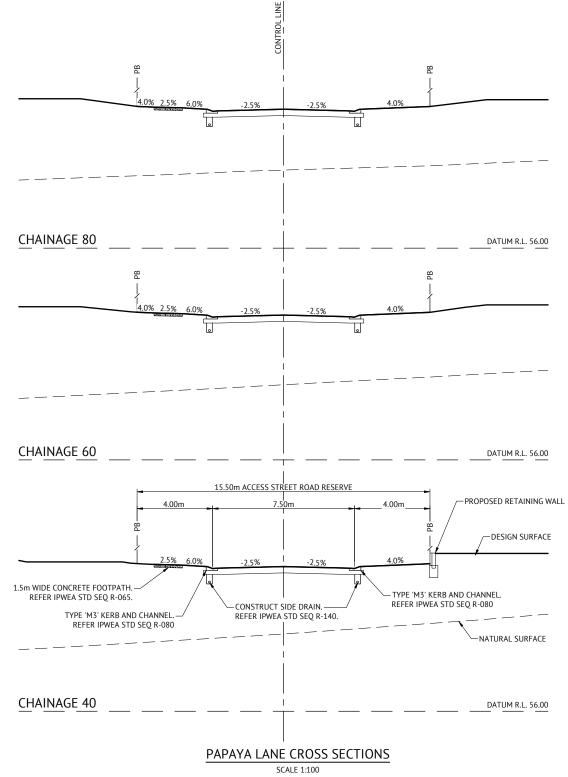
		FOR CONSTRUCTION		DESIGNED KLYNT KIWA			
						BRISBANE OFFICE	CHECKED ANDREW LA
						LEVEL 11, 300 ADELAIDE STREET	PROJECT MANAGE
						BRISBANE, OLD 4000	NICK SOME
18/08/2023	В	ISSUED FOR CONSTRUCTION	KK	PB	_	PH: (07) 3253 2222	PROJECT DIRECTO
05/12/2022	A	ORIGINAL ISSUE	KK	PB	Premise		
DATE	REV	DESCRIPTION	REC	APP	FICIIISC	WEB: www.premise.com.au	
		REVISIONS					PATRICK BR


KIWANG		SCALE		CLIENT	MIRVA
W LANGDON		0	HORIZONTAL 1:1000 (A1) 20 40 60m	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVIS
1ANAGER OMERVILLE		6	VERTICAL 1:100 (A1) 6m	LOCATION	TEVIOT ROAD. GREENBANK
DIRECTOR	PFD			Location	
K BRADY	RPEO 7112		ORIGINAL SHEET SIZE 41	SHEET TITLE	SAHARA STREET LONG SECTION

AC QLD PTY LTD	JOB CODE		
SION DEVELOPMENT	MIR-1001		
	SHEET NUMBER	REV	
	C312	В	

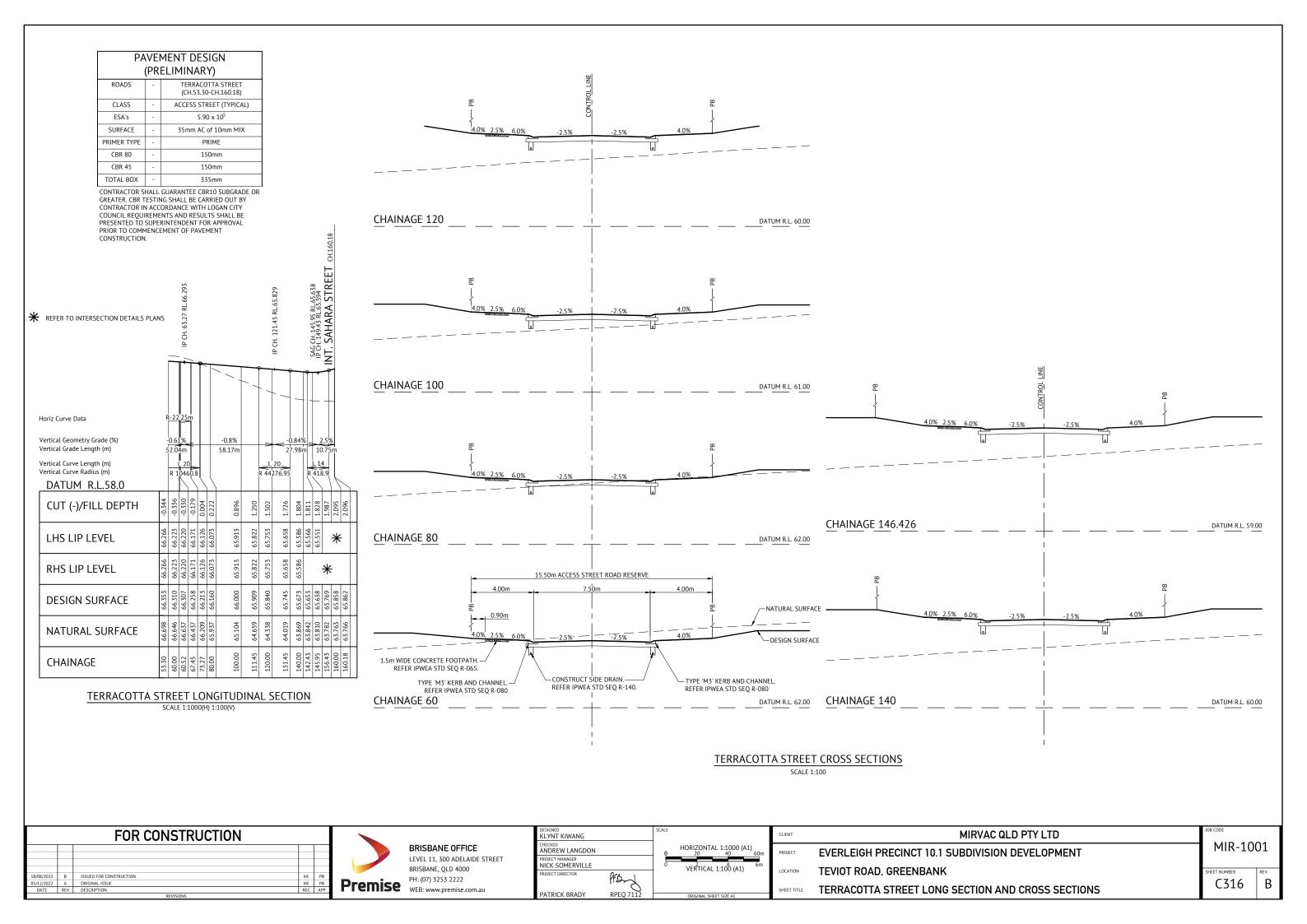
C312


/AC QLD PTY LTD	JOB CODE			
ISION DEVELOPMENT	MIR-1001			
	SHEET NUMBER	REV		
- SHEET 1	C313	В		


PAVEMENT DESIGN (PRELIMINARY)

(PRELIMINART)								
ROADS	-	PAPAYA LANE (CH.37.61-CH.108.70)						
CLASS	-	ACCESS STREET (TYPICAL)						
ESA's	-	5.90 x 10 ⁵						
SURFACE	-	35mm AC of 10mm MIX						
PRIMER TYPE	-	PRIME						
CBR 80	-	150mm						
CBR 45	-	150mm						
TOTAL BOX	-	335mm						

CONTRACTOR SHALL GUARANTEE CBR10 SUBGRADE OR GREATER. CBR TESTING SHALL BE CARRIED OUT BY CONTRACTOR IN ACCORDANCE WITH LOGAN CITY COUNCIL REQUIREMENTS AND RESULTS SHALL BE PRESENTED TO SUPPERINTENDENT FOR APPROVAL PRIOR TO COMMENCEMENT OF PAVEMENT CONSTRUCTION.

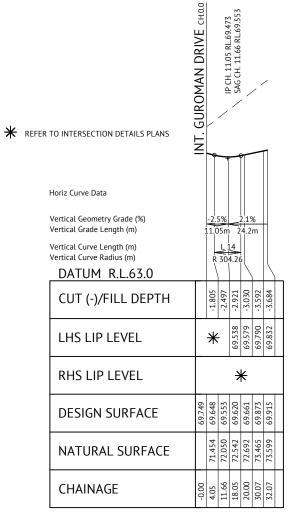


PAPAYA LANE LONGITUDINAL SECTION SCALE 1:1000(H) 1:100(V)

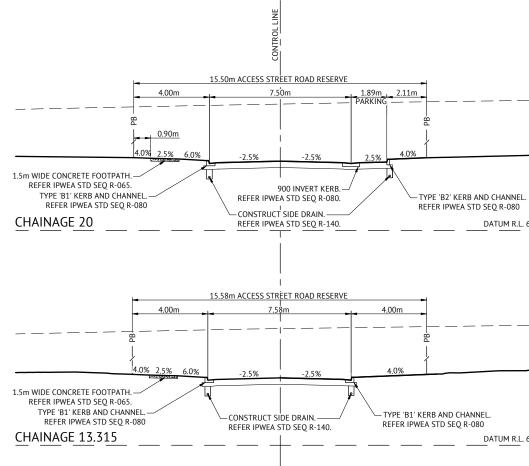
		FOR CONSTRUCTION					DESIGNED KLYNT KIWANG		SCALE		CLIENT	MIRVAC
						BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	CHECKED ANDREW LANGDON PROJECT MANAGER		0	HORIZONTAL 1:1000 (A1) 20 40 60m	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISIO
18/08/	2023 B	ISSUED FOR CONSTRUCTION	КК	PB		BRISBANE, QLD 4000 PH: (07) 3253 2222	NICK SOMERVILLE PROJECT DIRECTOR	PFD	0	VERTICAL 1:100 (A1) 6m	LOCATION	TEVIOT ROAD, GREENBANK
05/12/ DAT		 ORIGINAL ISSUE DESCRIPTION REVISIONS	KK REC	PB APP	Premise	WEB: www.premise.com.au	PATRICK BRADY	RPEQ 7112		ORIGINAL SHEET SIZE A1	SHEET TITLE	PAPAYA LANE LONG SECTION AND CR

DATUM R.L. 56.00				
/AC QLD PTY LTD	JOB CODE			
ISION DEVELOPMENT	MIR-1001			
CROSS SECTIONS	SHEET NUMBER	B		
	_			

PAVEMENT DESIGN (PRFLIMINARY)


(PRELIMINART)							
ROADS	-	ROAD 132 (CH.00-CH.4.05)					
CLASS	-	NEIGHBOURHOOD CONNECTOR					
ESA's	-	6.40 x 10 ⁶					
SURFACE	-	50mm AC of 14mm MIX					
PRIMER TYPE	-	PRIMER SEAL					
CBR 80	-	300mm					
CBR 45	-	100mm					
TOTAL BOX	-	450mm					
TOTAL DOX		1501111					

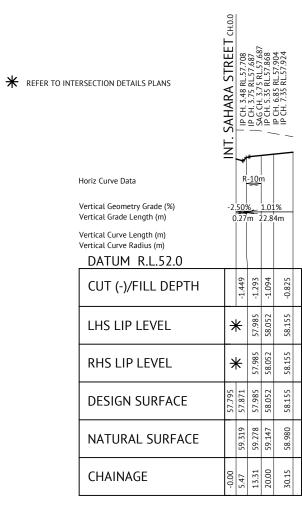
CONTRACTOR SHALL GUARANTEE CBR10 SUBGRADE OR GREATER. CBR TESTING SHALL BE CARRIED OUT BY CONTRACTOR IN ACCORDANCE WITH LOGAN CITY CONTRACTOR IN ACCORDANCE WITH LOGAN CITY COUNCIL REQUIREMENTS AND RESULTS SHALL BE PRESENTED TO SUPERINTENDENT FOR APPROVAL PRIOR TO COMMENCEMENT OF PAVEMENT CONSTRUCTION.


	(PRELIMINARY)								
	ROADS	-	ROAD 132 (CH.4.05-CH.32.07)						
Γ	CLASS	-	ACCESS STREET (TYPICAL)						
Γ	ESA's	-	5.90 x 10 ⁵						
	SURFACE	-	35mm AC of 10mm MIX						
	PRIMER TYPE	-	PRIME						
	CBR 80	-	150mm						
	CBR 45	-	150mm						
	TOTAL BOX	-	335mm						

PAVEMENT DESIGN

CONTRACTOR SHALL GUARANTEE CBR10 SUBGRADE OR GREATER. CBR TESTING SHALL BE CARRIED OUT BY CONTRACTOR IN ACCORDANCE WITH LOGAN CITY COUNCIL REQUIREMENTS AND RESULTS SHALL BE PRESENTED TO SUPERINTENDENT FOR APPROVAL PRIOR TO COMMENCEMENT OF PAVEMENT CONSTRUCTION.

ROAD 132 LONGITUDINAL SECTION SCALE 1:1000(H) 1:100(V)

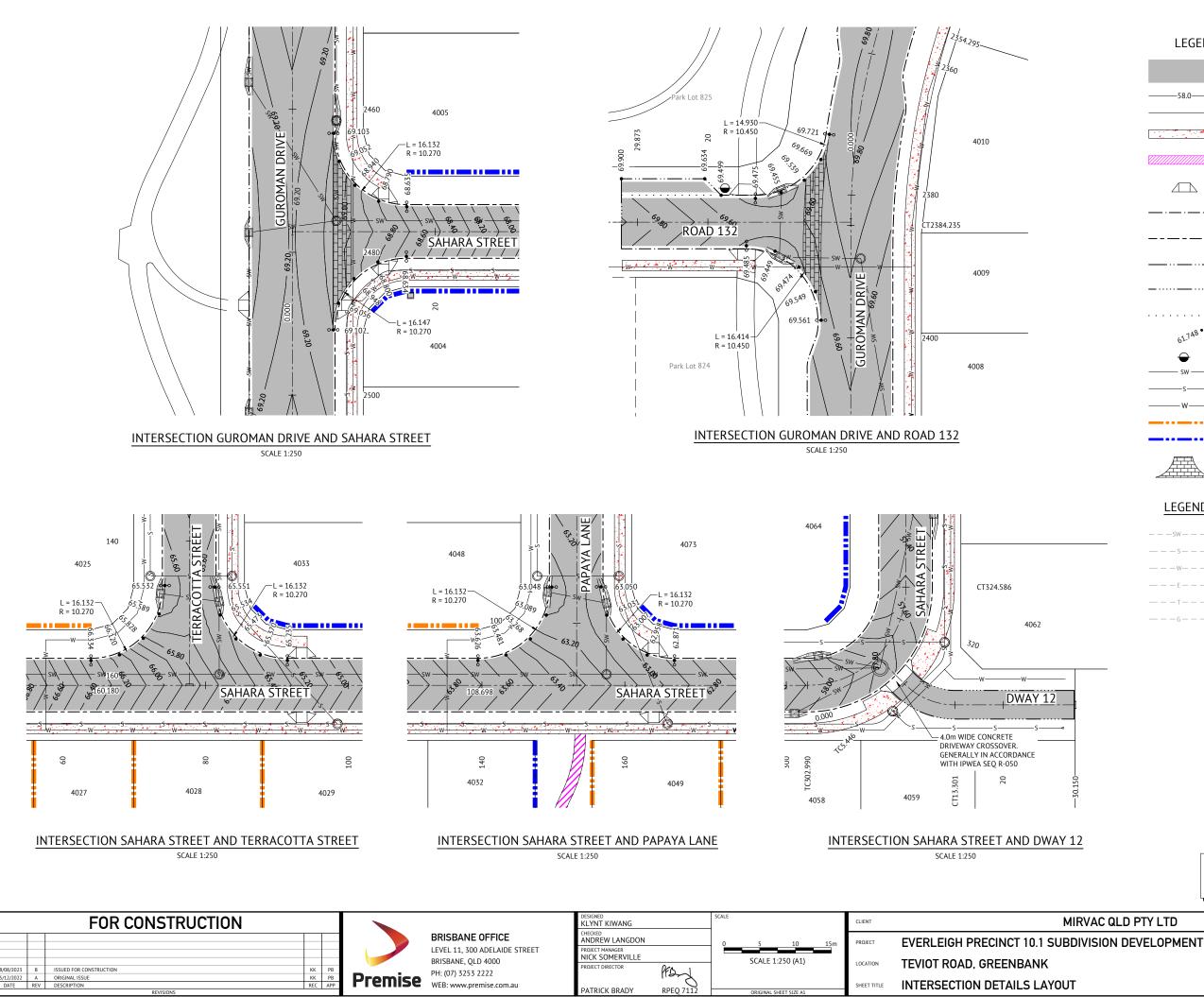

FOR CONSTRUCTION		DESIGNED KLYNT KIWANG	SCALE	CLIENT	MIRVAC QLD PTY LTD	
	BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	CHECKED ANDREW LANGDON PROJECT MANAGER NICK SOMERVILLE	HORIZONTAL 1:1000 (A1) 0 20 40 60m	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPMENT	MIR-1001
18/08/2023 B ISSUED FOR CONSTRUCTION KK PB	BRISBANE, QLD 4000 PH: (07) 3253 2222		⁰ VERTICAL 1:100 (A1) ^{6m}	LOCATION	TEVIOT ROAD, GREENBANK	SHEET NUMBER REV
05/12/2022 A ORIGINAL ISSUE KK PB DATE REV DESCRIPTION REC APP	Premise WEB: www.premise.com.au	PATRICK BRADY RPEQ 7112	ORIGINAL SHEET SIZE A1	SHEET TITLE	ROAD 132 LONG SECTION AND CROSS SECTIONS	C317 B

DATUM R.L. 66.00


DATUM R.L. 66.00

PAVEMENT DESIGN (PRELIMINARY)								
ROADS	-	DRIVEWAY 12						
CLASS	-	REAR ACCESS DRIVEWAY						
ESA's	-	1.1 x 10 ⁵						
SURFACE	-	35mm AC of 10mm MIX						
PRIMER TYPE	-	PRIME						
CBR 80	-	150mm						
CBR 45	-	100mm						
TOTAL BOX	-	285mm						

CONTRACTOR SHALL GUARANTEE CBR10 SUBGRADE OR GREATER. CBR TESTING SHALL BE CARRIED OUT BY CONTRACTOR IN ACCORDANCE WITH LOGAN CITY COUNCIL REQUIREMENTS AND WITH LOGAN CITY COUNCIL REQUIREMENTS AND RESULTS SHALL BE PRESENTED TO SUPERINTENDENT FOR APPROVAL PRIOR TO COMMENCEMENT OF PAVEMENT CONSTRUCTION. ASSUMED CBR 10 SUBGRADE PRIOR TO TESTING.


DRIVEWAY 12 LONGITUDINAL SECTION SCALE 1:1000(H) 1:100(V)

SCALE 1:100

FOR CONSTRUCTION		DESIGNED KLYNT KIWANG	SCALE	CLIENT	MIRVAC QLD PTY LTD	JOB CODE
	BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	ANDREW LANGDON PROJECT MANAGER	HORIZONTAL 1:1000 (A1) 0 20 40 60m	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPMENT	MIR-1001
18/08/2023 B ISSUED FOR CONSTRUCTION KK PB	BRISBANE, QLD 4000 PH: (07) 3253 2222	NICK SOMERVILLE PROJECT DIRECTOR	- VERTICAL 1:100 (A1) 6m	LOCATION	TEVIOT ROAD, GREENBANK	SHEET NUMBER REV
05/12/2022 A ORIGINAL ISSUE KK PB DATE REV DESCRIPTION REC APP	Premise WEB: www.premise.com.au	PATRICK BRADY RPEQ 7112	ORIGINAL SHEET SIZE A1	SHEET TITLE	DRIVEWAY 12 LONG SECTION AND CROSS SECTIONS	C318 B

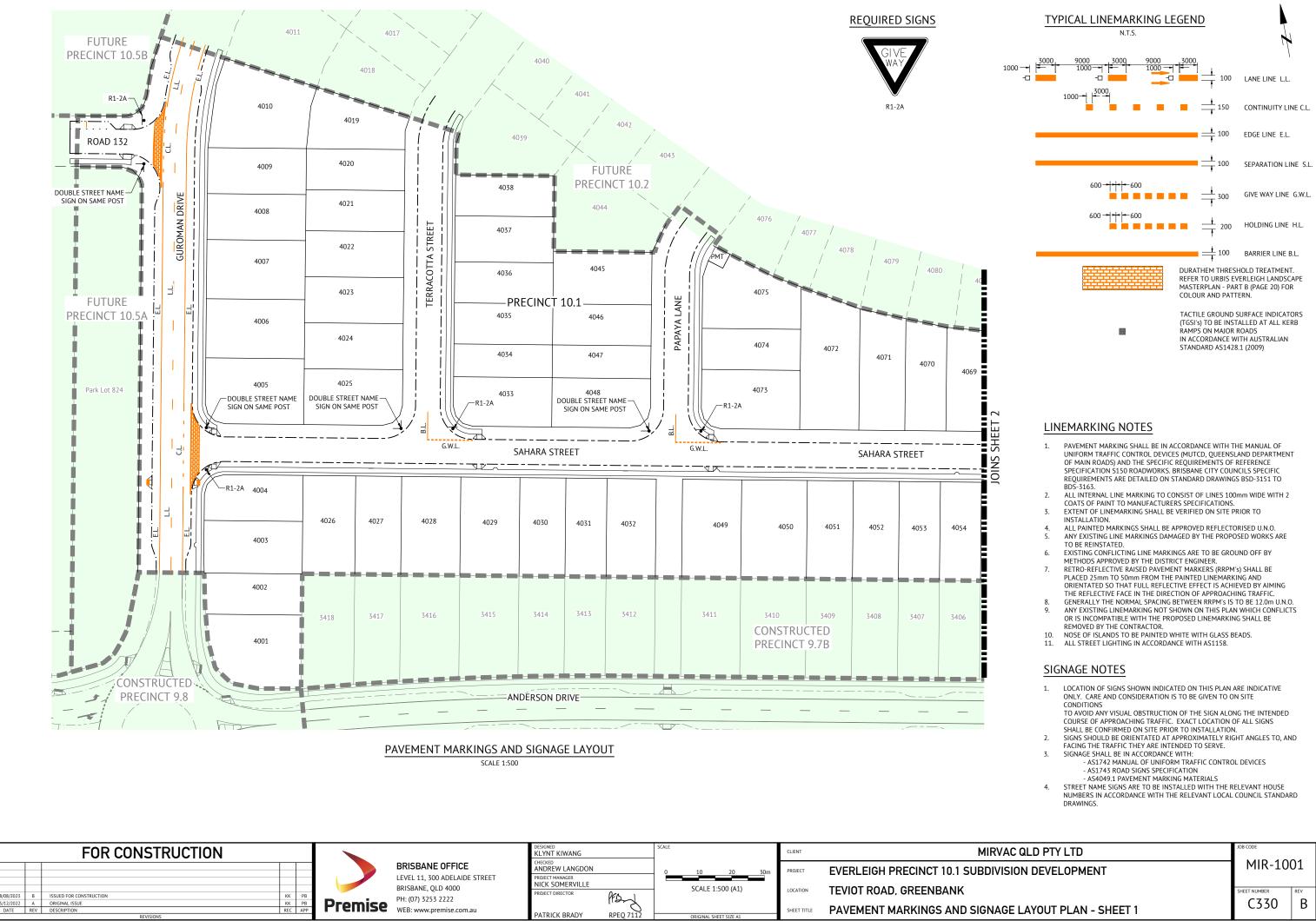
DATUM R.L. 55.00

LEGEND - PROPOSED

	PAVEMENT
	FINISHED MAJOR CONTOURS (0.20m)
	FINISHED MINOR CONTOURS (0.10m)
	PROPOSED 1.5m WIDE CONCRETE FOOTPATH. (UNO) REFER CONC. REQUIREMENTS ON DRG. No. C300
	PROPOSED CONCRETE LANDSCAPING FOOTPATH. REFER LANDSCAPING DRAWINGS FOR DETAILS.
	PROPOSED KERB RAMP. REFER IPWEA STD DWG RS-090.
<u> </u>	PROPOSED IPWEA TYPE 'B1' KERB & CHANNEL. REFER IPWEA STD DWG RS-080.
	PROPOSED IPWEA TYPE 'M3' KERB & CHANNEL. REFER IPWEA STD DWG RS-080.
<u> </u>	PROPOSED IPWEA TYPE 'B2' KERB. REFER IPWEA STD DWG RS-080.
	PROPOSED IPWEA TYPE 'ER1' EDGE RESTRAINT. REFER IPWEA STD DWG RS-080.
	PROPOSED IPWEA CHANNEL 900 WIDE. REFER IPWEA STD DWG RS-080.
61.7 ⁴⁸ •	LIP OF KERB LEVEL
\ominus	TRANSITION IN KERB AND CHANNEL TYPE
SW	PROPOSED STORMWATER
s	PROPOSED SEWER
W	PROPOSED WATER
	PROPOSED CONCRETE SLEEPER RETAINING WALL
	PROPOSED CONCRETE PANEL RETAINING WALL
	DURATHEM THRESHOLD TREATMENT. REFER TO URBIS EVERLEIGH LANDSCAPE MASTERPLAN - PART B (PAGE 20) FOR COLOUR AND PATTERN.
LEGEND - COM	ISTRUCTED
SWSW	EXISTING STORMWATER
— — — S — — — S —	EXISTING SEWER
w	EXISTING WATER
— — — E — — — E —	EXISTING ELECTRICAL

EXISTING TELSTRA

EXISTING GAS

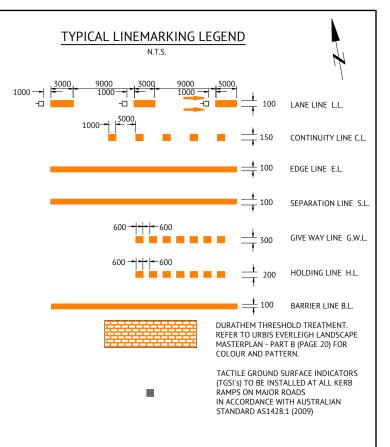

— — G — — — G —


NOTE
LEVELS AND SETOUT INFORMATION FOR KERB AND CHANNEL CONSTRUCTION IS GIVEN TO LIP OF KERB.

MIRVAC QLD PTY LTD

MIR-1001

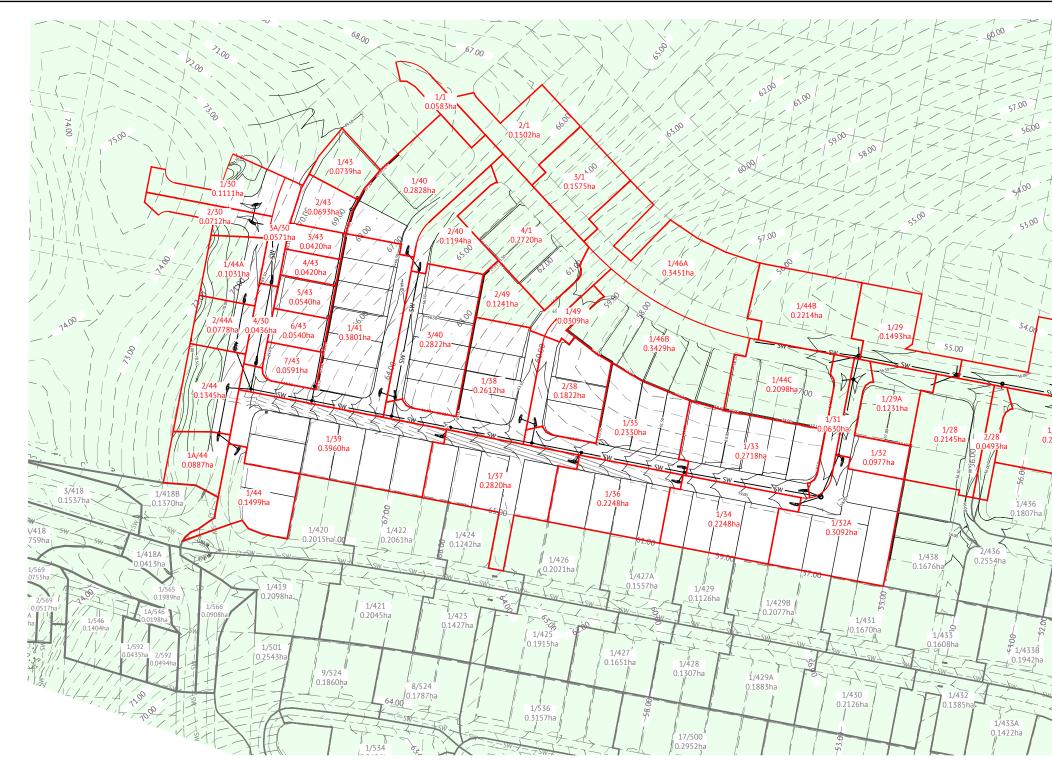
В



PAVEMENT MARKINGS AND SIGNAGE LAYOUT

SCALE 1:500

FOR CONSTRUCTION		DESIGNED SCALE SCALE	CLIENT	MIRVAC QLD PTY LTD	JOB CODE
	BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	ANDREW LANGDON 0 10 PROJECT MANAGER	20 30m PROJEC	EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPMENT	MIR-1001
18/08/2023 B ISSUED FOR CONSTRUCTION KK PB	BRISBANE, QLD 4000 PH: (07) 3253 2222	PROJECT DIRECTOR DCA	:500 (A1)	TEVIOT ROAD, GREENBANK	SHEET NUMBER REV
05/12/2022 A ORIGINAL ISSUE KK PB DATE REV DESCRIPTION REC APP	Premise WEB: www.premise.com.au	PATRICK BRADY RPEQ 7112 ORIGINAL	SHEET T	TITLE PAVEMENT MARKINGS AND SIGNAGE LAYOUT PLAN - SHEET 2	C331 B



LINEMARKING NOTES

- PAVEMENT MARKING SHALL BE IN ACCORDANCE WITH THE MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES (MUTCD, QUEENSLAND DEPARTMENT 1. OF MAIN ROADS) AND THE SPECIFIC REQUIREMENTS OF REFERENCE SPECIFICATION \$150 ROADWORKS, BRISBANE CITY COUNCILS SPECIFIC REQUIREMENTS ARE DETAILED ON STANDARD DRAWINGS BSD-3151 TO BDS-3163
- 2.
- ALL INTERNAL LINE MARKING TO CONSIST OF LINES 100mm WIDE WITH 2 COATS OF PAINT TO MANUFACTURERS SPECIFICATIONS. EXTENT OF LINEMARKING SHALL BE VERIFIED ON SITE PRIOR TO 3.
- INSTALLATION. ALL PAINTED MARKINGS SHALL BE APPROVED REFLECTORISED U.N.O. ANY EXISTING LINE MARKINGS DAMAGED BY THE PROPOSED WORKS ARE TO BE REINSTATED. 5.
- EXISTING CONFLICTING LINE MARKINGS ARE TO BE GROUND OFF BY METHODS APPROVED BY THE DISTRICT ENGINEER. 6.
- RETRO-REFLECTIVE RAISED PAVEMENT MARKERS (RRPM's) SHALL BE PLACED 25mm TO 50mm FROM THE PAINTED LINEMARKING AND 7. ORIENTATED SO THAT FULL REFLECTIVE EFFECT IS ACHIEVED BY AIMING THE REFLECTIVE FACE IN THE DIRECTION OF APPROACHING TRAFFIC.
- GENERALLY THE NORMAL SPACING BETWEEN RRPM'S IS TO BE 12.0m U.N.O. ANY EXISTING LINEMARKING NOT SHOWN ON THIS PLAN WHICH CONFLICTS 8. 9.
- OR IS INCOMPATIBLE WITH THE PROPOSED LINEMARKING SHALL BE REMOVED BY THE CONTRACTOR.
- NOSE OF ISLANDS TO BE PAINTED WHITE WITH GLASS BEADS.
 ALL STREET LIGHTING IN ACCORDANCE WITH AS1158.

SIGNAGE NOTES

- 1. LOCATION OF SIGNS SHOWN INDICATED ON THIS PLAN ARE INDICATIVE ONLY. CARE AND CONSIDERATION IS TO BE GIVEN TO ON SITE CONDITIONS TO AVOID ANY VISUAL OBSTRUCTION OF THE SIGN ALONG THE INTENDED
- COURSE OF APPROACHING TRAFFIC. EXACT LOCATION OF ALL SIGNS SHALL BE CONFIRMED ON SITE PRIOR TO INSTALLATION.
- SIGNS SHOULD BE ORIENTATED AT APPROXIMATELY RIGHT ANGLES TO, AND 2. FACING THE TRAFFIC THEY ARE INTENDED TO SERVE.
- 3. SIGNAGE SHALL BE IN ACCORDANCE WITH:
 - AS1742 MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES - AS1743 ROAD SIGNS SPECIFICATION - AS4049.1 PAVEMENT MARKING MATERIALS
- STREET NAME SIGNS ARE TO BE INSTALLED WITH THE RELEVANT HOUSE NUMBERS IN ACCORDANCE WITH THE RELEVANT LOCAL COUNCIL STANDARD 4 DRAWINGS.

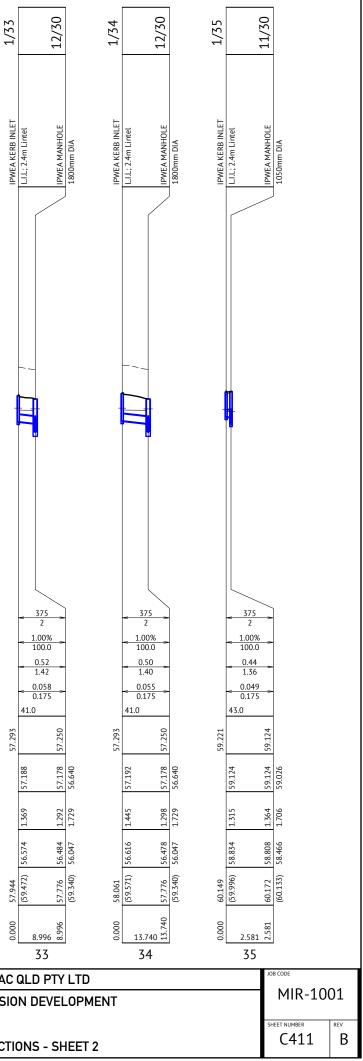
LEGEND

	STORMWATER CATCHMENT BOUNDARY
	STORMWATER CATCHMENT BOUNDARY
1/A 0.2311ha	STORMWATER CATCHMENT NUMBER AND AREA
SW	PROPOSED STORMWATER LINE
-SWSW-	CONSTRUCTED STORMWATER LINE
—12.0——	FINISHED CONTOURS (1.00m)
— 12.0 — — —	EXISTING CONTOURS (0.50m)

	FOR CONSTRUCTION				DESIGNED KLYNT KIWANG		SCALE	CLIENT	MIRVA
				BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	CHECKED ANDREW LANGDON PROJECT MANAGER		0 <u>20 40 60</u> m	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVIS
18/08/202	23 B ISSUED FOR CONSTRUCTION	KK PB		BRISBANE, QLD 4000	NICK SOMERVILLE PROJECT DIRECTOR	PEB	SCALE 1:1000 (A1)	LOCATION	TEVIOT ROAD, GREENBANK
05/12/202 DATE		KK PB REC APP	Premise	PH: (07) 3253 2222 WEB: www.premise.com.au	PATRICK BRADY	RPEO 7112	ORIGINAL SHEET SIZE A1	SHEET TITLE	STORMWATER CATCHMENT LAYOUT

N

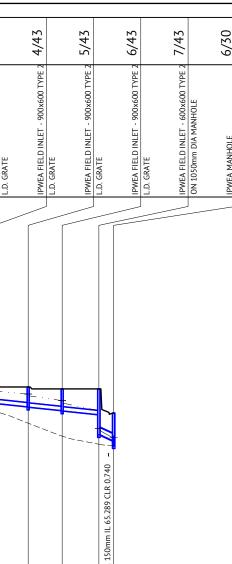
REV


В

	STRUCTURE NAME	7	/1 /1	0/1	1/28	/1	29A	/30 /30 /30	730 730 730 730 730 730 730 730 730 730	
				10		3	8	3A 2/ 1/	4 7 6 7 6	<u>0</u>
		щ		-				OLE 0	OLE	
With the transmission of the transm	STRUCTURE DESCRIPTION	A MANHO	DLE	IEADWALL	DLE	ALET el	ALET Lel	T (SA	ALET IA MANH DLE DLE DLE	JLE
Image: Structure in the second sec		IRE IPWEJ Imm DIA	imm DIA A MANHC imm DIA A MANHC imm DIA	PORARY H	END A MANHC Imm DIA	A KERB IN 2.4m Lint 2.4m Lint 2.4m Lint A MANHC imm DIA	A KERB IN 2.4m Lint A MANHC imm DIA	A KERB Ih 2.4m Lint 2.4m Lint 2.4m Lint 2.4m Lint imm DIA A MANHC imm DIA 050mm D 050mm D	A KERB II 2.4m Lint 050mm D A MANHC mm DIA imm DIA imm DIA mm DIA imm DIA	A MANHC Imm DIA
MARKEL LYUL NOR PD MARKEL LYUL		1050 1PWE	1500 1500 1500 1550	TEMI	PIPE 1350	1500 1500	IPWE L.I.L.	IPWE	IPWE 1050 1050 1050 1050 1050 1050	1050 1050
With the first part of th										
MARKEL LYUL NOR PD MARKEL LYUL										
MULTINE NULL INFORMATION										
Implementation The Million										
All of the second sec	SAND BAG AND SEAL									
No. No. No. No. <th< td=""><td></td><td></td><td></td><td>TO PIPE END.</td><td></td><td></td><td></td><td>○</td><td></td><td></td></th<>				TO PIPE END.				○		
MEDICINAL NO					¥.			CLR	988	
MY 5075/mint 22 220 100 <th< td=""><td></td><td>b+</td><td></td><td></td><td></td><td></td><td></td><td></td><td>002 <u>2CLR</u></td><td></td></th<>		b+							002 <u>2CLR</u>	
PF: SEC (min) 22 K00 100 <t< td=""><td></td><td></td><td>465 CLR C</td><td></td><td></td><td></td><td></td><td></td><td>m IL 68 371 CLR 0.3</td><td>1</td></t<>			465 CLR C						m IL 68 371 CLR 0.3	1
Ministrer No. N			nm IL 5					WATEI	2000m 65.249 11 65.	
PHS D2L (pmi) P25 P26 P100 P1000 P100 P100									W/ W/	
PPC SQL prev) 122 120			WA VER 150m						3E/	
Processes 0.000 1.378 1000 </td <td></td> <td>525</td> <td>SEI</td> <td></td> <td>375</td> <td>375</td> <td>375</td> <td>375 375 375 3</td> <td></td> <td>-></td>		525	SEI		375	375	375	375 375 375 3		->
Mark HUL (VEX)(VY(m)) 2.96 3.55 3.33 1.65 1.64 1.64 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.45 <t< td=""><td>PIPE GRADE (%)</td><td>2 2.28% 43.9</td><td></td><td>1.00%</td><td>1.00%</td><td>1.00%</td><td>1.00%</td><td>$\frac{2}{=\frac{1.00\%}{100.0}} = \frac{2}{=\frac{1.00\%}{100.0}} = \frac{1.00\%}{100.0} = \frac{1.0}{100.0}$</td><td></td><td>-></td></t<>	PIPE GRADE (%)	2 2.28% 43.9		1.00%	1.00%	1.00%	1.00%	$\frac{2}{=\frac{1.00\%}{100.0}} = \frac{2}{=\frac{1.00\%}{100.0}} = \frac{1.00\%}{100.0} = \frac{1.0}{100.0}$		->
Datumel 100 <	PART FULL VELOCITY (m/s)	2.96	2.78 3.56	3.23	1.45	1.28	1.17		.43 1.49 2.82 3.66 4.08	~
1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	PIPE CAPACITY AT GRADE (cumecs)	0.649		2.732	0.175			0.175 0.175 0.175 0.175 0.1		
HGL IN PIPE 11 10 <th10< th=""> 10 10</th10<>	WSE IN STRUCTURE	56.364 55.020	54.391	53.262	54.206 54.059	54.950 54.391	54.391	68.282 68.203 67.925 67.631	67.250 66.268 64.560	63.215
DEPTH OF INVERT BELOW FSL 8807 1997	HGL IN PIPE	6.271 6.271	4.789 4.391 4.360 4.059 4.026	.3.262 .3.262	.4.206 .4.155 .4.026	(4.887) (4.817) (4.360)	.4.816 .4.649 .4.360	8.254 8.200 8.179 8.179 8.041 7.905		3.215
INVERT LEVEL 15575 1000000000000000000000000000000000000	DEPTH OF INVERT BELOW FSL									768 6
FINISHED (& EXISTING) 00000 0000 00000	INVERT LEVEL									665 1.
CHAINAGE 00 55.295 56 52.570 10 10 10 00 00 11 00 00 11 00 00 00 11 00<	FINISHED (& EXISTING)									34 62 246)
B 55.295 52.570 24.739 79.510 79.510 8 2.400 8 4.771 8 9.506 11.432 9.24.402 43.621 6 42.956 9 31.812 7 LINE 1 28 29 29A 29A 30 30.612 11.432 9.506 11.432 11.432 9.506 11.432 9.506 11.432 11.432 11.432 11.432 11.432 11.432 11.432 11.432 11.432 11.432 11.432 11.432		(56.6	x.cc) <u>(55.7)</u> (55.9) (55.8) (55.8)	[4 54.6 ¹ (55.2			56.1 (56.1 (56.1 (55.7	69.4 (71.5 (71.6 (71.7 (71.7 <td>9 69.1 (68.7 (68.7 (67.8 (67.8 (67.8 (67.8 (65.8 (65.8 (9 (65.8 (9 (65.8</td> <td>91 64.4 (62.7</td>	9 69.1 (68.7 (68.7 (67.8 (67.8 (67.8 (67.8 (65.8 (65.8 (9 (65.8 (9 (65.8	91 64.4 (62.7
FOR CONSTRUCTION Designed filling Scale Client MIRVAC QLD PTY LTD		567.5 67.5 55.295 55.295	52.570	79.510 ¹¹ 79.510				00 90 56 56 57 57 57 57 57 57 57 57 57 57 57 57 57		215.5
		ON		DESIGNED KI VNT KIWAN			1	MIRVAC		JOB CODE
			BRISBANE OFFIC	CHECKED ANDREW LAN		HORIZONTAL 1:1000 (A1)				MIR-1001
LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 Restrict Director Construction			BRISBANE, QLD 4000	NICK SOMERV		⁰ VERTICAL 1:100 (A1) ^{6m}				
B issued for construction KK PB ORiginal issue PH: (07) 3253 2222 PAIL (07) 3253 2222 PH: (07) 3253 222 PH: (07) 3253 22	A ORIGINAL ISSUE REV DESCRIPTION	KK F	PH: (07) 3253 2222 WEB: www.premise.co	an au	\mathbf{O}	ORIGINAL SHEFT SIZE A1			ONS - SHEET 1	C410 B

18/08/20 05/12/20 DATE

STRUCTURE NAME	8/30	9/30	10/30	11/30	12/30	13/30	14/30	1/31 14/30	1/32 14/30	1/32A 13/30	1/33
STRUCTURE DESCRIPTION	IPWEA MANHOLE 1050mm DIA	IPWEA MANHOLE 1050mm DIA	1050mm DIA 1050mm DIA	IPWEA MANHOLE 1050mm DIA	IPWEA MANHOLE	1800mm DIA IPWEA MANHOLE 1050mm DIA	IPWEA MANHOLE 1200mm DIA IPWEA MANHOLE 1800mm DIA	FUTURE IPWEA KERB INLET (SAG) LJ.L; 2.4m Lintel IPWEA MANHOLE 1200mm DIA	FUTURE IPWEA KERB INLET (SAG) LI.L; 2.4m Lintel IPWEA MANHOLE 1200mm DIA	IPWEA KERB INLET LI.L; 2.4m Lintel IPWEA MANHOLE 1050mm DIA	IPWEA KERB INLET L.I.L.; 2.4m Lintel
	WATER 100mm IL 62.995 CLR 0.300 ⁷		SEWER 150mm IL 60.878 CLR 0.300 +				- SEWER 150mm IL 55.709 CLR 0.367 - SEWER 150mm IL 53.935 CLR 0.391 - SEWER 150mm IL 53.935 CLR 0.391	SAND BAG AND SEA TO PIPE END END.	ν.		
PIPE SIZE (mm) PIPE CLASS PIPE GRADE (%) PIPE SLOPE (1 in X) FULL PIPE VELOCITY (m/s)	<u> </u>	5% .8	600 2 2.27% 44.1 2.38	600 2 4.30% 23.2 2.60	600 2 3.19% 31.3 2.91	 675 2 2 1.99% 2.28 50.3 43.5 	2 0.55%	375 2 1.00% 100.0	375 2 1.00% 100.0	375 2 1.00% 100.0	33 1.0 10
PART FULL VELOCITY (m/s) PIPE FLOW (cumecs) PIPE CAPACITY AT GRADE (cumecs)	<u> </u>	0 79	3.57 0.672 0.925	2.60 4.66 0.735 1.274	4.26 0.822 1.097	 2.54 2.70 3.65 3.90 0.909 0.96 1.185 1.26 	0 2.32 55 1.024	$\begin{array}{c} 0.33 \\ \hline 1.25 \\ \hline 0.036 \\ \hline 0.175 \end{array}$	0.34 1.26 0.038 0.175	$\begin{array}{c} 0.61 \\ \hline 1.49 \\ \hline 0.068 \\ \hline 0.175 \end{array}$	1.
PART FULL VELOCITY (m/s) PIPE FLOW (cumecs) PIPE CAPACITY AT GRADE (cumecs) DATUM RL	3.5 <u>0.57</u> 0.67 43.0	79 73	3.57 0.672 0.925	4.66 0.735	4.26 0.822 1.097	3.65 3.90 0.909 0.96	0 2.32 55 1.024 59 0.826	1.25 0.036 0.175 39.0	1.26 0.038 0.175 39.0	1.49 0.068	= 1 = 0. - 0. 41.0
PART FULL VELOCITY (m/s) PIPE FLOW (cumecs) PIPE CAPACITY AT GRADE (cumecs) DATUM RL WSE IN STRUCTURE	3.5 0.57 43.0 517 29	0 79 73 560029	3.57 0.672 0.925 0.925	4.66 0.735 1.274 ************************************	4.26 0.822 1.097	3.65 3.90 <u>0.909</u> 0.96 1.185 1.26	0 2.32 55 1.024 59 0.826 415 55 55 55 5	1.25 0.036 0.175 39.0 09 55 55 55	1.26 0.038 0.175 39.0 4 5 5 5 5 5 5 5 5 5 5 5 5 5	* 1.49 * 0.068 * 0.175 * 41.0 * 66 * 7.95 * 7.95	41.0 667.25
PART FULL VELOCITY (m/s) PIPE FLOW (cumecs) PIPE CAPACITY AT GRADE (cumecs) DATUM RL WSE IN STRUCTURE HGL IN PIPE	3.5 0.57 0.67 43.0 5172 8 5172 8	79 73	3.57 0.672 0.925 0.925	4.66 0.735 1.274 ************************************	4.26 0.822 1.097	3.65 3.90 <u>0.909</u> 0.96 1.185 1.26	0 2.32 55 1.024 59 0.826	1.25 0.036 0.175 39.0 29 15	1.26 0.038 0.175 39.0	1.49 0.068 0.175	= 1 = 0. = 0. 41.0 \$67
PART FULL VELOCITY (m/s) PIPE FLOW (cumecs) PIPE CAPACITY AT GRADE (cumecs) DATUM RL WSE IN STRUCTURE	3.5 0.57 0.67 43.0 5172 8 5172 8	0 79 73 560029	3.57 0.672 0.925 0.67 410 0.67 412	4.66 0.735 1.274 765 765 765 765 765	4.26 0.822 1.097	2,65 2,75 2,75	0 2.32 55 1.024 59 0.826 415 55 55 55 5	1.25 0.036 0.175 39.0 09 55 55 55	1.26 0.038 0.175 39.0 4 5 5 5 5 5 5 5 5 5 5 5 5 5	* 1.49 * 0.068 * 0.175 * 41.0 * 66 * 7.95 * 7.95	= 1 = 0. 41.0 \$67.25
PART FULL VELOCITY (m/s) PIPE FLOW (cumecs) PIPE CAPACITY AT GRADE (cumecs) DATUM RL WSE IN STRUCTURE HGL IN PIPE		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.57 0.672 0.925 0 0 00000000000000000000000000000000	4.66 0.735 1.274 7.100 4.66 0.735 1.274 7.1000 7.100 7.100 7.10000 7.1000 7.1000 7.1000 7.10000 7.10000 7.	4.26 0.822 1.097 827,250 7,272 8,27,250 1,27,250	3.65 3.90 0.909 0.96 1.125 1.26 6709 2.6740 6709 2.6740 1000 2.6730 1000 2.67128 1000 2.67128 1000 2.67128	0 2.32 32 1.024 55.317 36 0.856 55.326 1.969 55.020 55.030 2.210 55.099 55.020 2.210 55.099 55.020 2.276 54.789	1.316 55.307 55.360 1.428 55.317 55.317 1.428 55.317 55.317 1.969 55.256 1.969	1.26 55.317 1.466 55.317 33.0 1.552 55.317 1.552 1.552 55.317 1.552 1.552 1.552 1.552 1.552 1.552 1.552 1.552 1.552 1.552 1.552 1.552 1.552 1.553 <td>1.49 0.068 41.0 1.315 1.315 1.56.249 56.438 1.56.249 56.438 1.56.249 56.438 1.56.249 56.249 56.249 56.243 1.56.</td> <td>1.369 57.188 57.293 1.369 57.188 57.293</td>	1.49 0.068 41.0 1.315 1.315 1.56.249 56.438 1.56.249 56.438 1.56.249 56.438 1.56.249 56.249 56.249 56.243 1.56.	1.369 57.188 57.293 1.369 57.188 57.293
PART FULL VELOCITY (m/s) PIPE FLOW (cumecs) PIPE CAPACITY AT GRADE (cumecs) DATUM RL WSE IN STRUCTURE HGL IN PIPE DEPTH OF INVERT BELOW F	3.5 0.57 0.67 43.0 5172 8 5172 8	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3.57 60.892 1.540 61.490 61.490 61.490 61.415 61.490 61.415 61.415	4.66 0.735 1.274 28.9466 1.706 2.8.9466 1.706 2.8.9466 1.706 2.8.9466 1.706 2.9.124 2.9.12	4.26 0.822 1.097 05775 82775	3.60 3.6047 1.729 56.640 1.1729 56.640 96060 1.1822 1.676 56.249 6 56.249 56.249 7 1.696 56.249 6 56.249 56.249	0 2.32 55 1.024 59 0.826 0.	1.25 0.036 0.175 39.0 25:307 25:317 25:320	25:317 1.26 0.038 0.172 39.0 25:317 55:3	315 56.251 56.438 716 56.251 56.251 710 710 710 710 710 710 7110 7	57.293 57.293 410 60 70 67 7293
PART FULL VELOCITY (m/s) PIPE FLOW (cumecs) PIPE CAPACITY AT GRADE (cumecs) DATUM RL WSE IN STRUCTURE HGL IN PIPE DEPTH OF INVERT BELOW F INVERT LEVEL FINISHED (& EXISTING)	e 3.5 e 0.57 e 0.67 e 0.77 e 0.77	22 62 0 323 63.181 61.574 1.607 62.095 62.095 7 (61.046) 61.499 1.682 62.025 7	3.22 60.892 1.540 61.490 60.872 1.560 61.415 60.872	4.66 0.735 1.274 28.9466 1.706 2.8.9466 1.706 2.8.9466 1.706 2.8.9466 1.706 2.9.124 2.9.12	4.26 0.822 1.097 22178 72178 72178 72178 72178	3.60 3.6047 1.729 56.640 1.1729 56.640 96060 1.1822 1.676 56.249 6 56.249 56.249 7 1.696 56.249 6 56.249 56.249	9.825 56.515 54.621 1.894 55.317 55.317 55.317 9.825 56.515 54.621 1.894 55.317 55.317 55.317 1.95 54.546 1.969 55.256 55.266 55.266 2.430 56.6686 54.477 2.210 55.099 55.020 9780 2.430 56.6886 54.477 2.2716 54.789 55.099 55.020 95.6.020 (55.658) 54.110 2.576 54.789 54.789 55.009 55.009 55.000	00 56.461 55.360 (56.406) 55.145 1.316 55.307 (56.406) 55.145 1.316 55.307 (56.515) 55.5087 1.428 55.317 (56.329) 54.546 1.969 55.256	54.993 1.466 55.317 55.374 54.993 1.466 55.317 0.028 54.962 1.552 55.317 0.038 54.546 1.969 55.317 55.317	55.920 1.315 56.251 56.438 1.760 25.320 1.315 56.251 55.588 1.361 56.249 56.249 55.552 1.696 56.158 56.249	00 57.944 577.4 1.369 57.188 57.293 56.574 1.369 57.188 57.293 56.574 1.369 57.188 57.293 57.
PART FULL VELOCITY (m/s) PIPE FLOW (cumecs) PIPE CAPACITY AT GRADE (cumecs) DATUM RL WSE IN STRUCTURE HGL IN PIPE DEPTH OF INVERT BELOW F INVERT LEVEL FINISHED (& EXISTING) SURFACE LEVEL CHAINAGE LINE	S1222 512229 512229 512229 512229 512229 527234 52724 52725	22 62 0 323 63.181 61.574 1.607 62.095 62.095 7 (61.046) 61.499 1.682 62.025 7	3.22 0.00 61.490 61.490 0.6053 60.892 1.540 61.490 (60.604) 60.872 1.560 61.415	4.66 0.732 1.243 60.172 60.172 58.466 1.706 59.026 59.026 59.026 59.026	4.26 0.822 1.097 05725 057555 057555 05755 05755 05755 05755 05755 05755 05755 0	3.65 3.90 0.909 0.96 1.185 1.26 61.185 1.26 61.185 1.26 62.23 62.340) 62.240 22.240 61.185 1.26 61.185 1.26 62.240 22.240 62.241 22.240 72.252 22.252 71.696 26.241 72.252 22.252 72.252 22.252 72.252 22.252 72.252 22.252 72.252 40.92	13 1.054 55.317	56.461 55.145 1.316 55.307 55.360 (56.406) 55.145 1.316 55.307 66 56.515 55.087 1.428 55.317 67 56.515 55.087 1.428 55.317 55.317 56.529 54.546 1.969 55.256	00 56.459 55.374 (56.414) 54.993 1.466 55.317 66.6 (56.414) 54.993 1.466 55.317 66.7 (56.414) 54.993 1.466 55.317 66.7 (56.515) 54.962 1.552 55.317 66.00 (56.329) 54.546 1.969 55.256 97.1	0.000 57.235 1.40 0.009 1.315 56.251 1.315 56.251 1.315 56.251 1.315 56.251 1.315 56.251 1.315 56.251 1.315 56.249 56.249 56.249 56.249 56.249 56.251 1.315 56.249 56.249 56.251 1.315 56.241 56.251 1.315 56.241 56.251 2.55.24 56.251 2.55.24 56.251 2.55.24 56.251 2.55.24 56.251 2.55.24 56.251 2.55.24 56.251 2.55.24 56.251 2.55.24 2.55.25 2.55.24 2.55.24 2.55.25 2.55.24 2.55.24 2.55.24 2.55.25 2.55.24 2.55.	0.000 57.944 57.1369 57.188 57.293 [30] [59,472] 56.574 1.369 57.188 57.188 57.293
PART FULL VELOCITY (m/s) PIPE FLOW (cumecs) PIPE CAPACITY AT GRADE (cumecs) DATUM RL WSE IN STRUCTURE HGL IN PIPE DEPTH OF INVERT BELOW F INVERT LEVEL FINISHED (& EXISTING) SURFACE LEVEL CHAINAGE	S1222 512229 512229 512229 512229 512229 527234 52724 52725	22 62 0 323 63.181 61.574 1.607 62.095 62.095 7 (61.046) 61.499 1.682 62.025 7	3.22 0.00 61.490 61.490 0.6053 60.892 1.540 61.490 (60.604) 60.872 1.560 61.415	4.66 0.735 1.274 700 55 1.274 700 55 700 55 700 10 700 55 700 10 700	4.26 0.822 1.097 00000000000000000000000000000000000	3.65 3.90 0.909 0.96 1.185 1.26 61.185 1.26 62.71 1.185 62.73 1.162 62.73 1.162 62.73 1.162 62.73 1.162 62.74 1.162 62.75 1.162 62.74 1.162 62.75 1.162 62.74 1.162 62.75 1.162 72.889 1.162 23.889 40.92 24.889 40.92	0 2.35 32 35 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 35 35 35 35 35 35 35 35 35	0.000 56.461 1.52 0.002 55.145 1.316 55.145 1.316 55.145 1.316 55.145 1.316 55.307 55.307 55.307 55.317 55.307 55.317	0000 56.459 1.55 1.55 1.55 1.466 55.317 3.112 3.112 3.112 55.317 3.112 55.317 3.112 55.317 55.317 3.112 55.317 55.317 55.317 55.317 (56.414) 54.993 1.466 55.317 55.317 (56.414) 55.317 55.317 (56.414) 55.317 (56.414) 55.317 (56.414) 55.317 (56.414) 55.317 (56.414) 55.317 (56.414) 55.317 (56.414) 55.317 (56.515) 54.962 55.317 (56.329) 54.562 (56.329) 54.562 (56.329) 54.562 (56.329) 54.562 (56.329) 54.562 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.325 (57.329) 55.325 (57.329) (57.329) (57.329) (57.329) (57.329) (57.3	1.49 0.000 41.0 1.410 0.000 25.235 41.0 1.315 26.438 1.315 1.315 26.231 1.315 26.231 1.315 26.231 1.315 26.232 1.315 26.232 1.315 26.232 1.315 26.232 1.315 26.232 1.315 26.232 1.315 26.251 26.252 1.315 26.251 26.251 26.251 26.252 26.251 26.252 26.251 26.252 26.251 26.252 27.252 27.2	0000 57.944 577.293 57
PART FULL VELOCITY (m/s) PIPE FLOW (cumecs) PIPE CAPACITY AT GRADE (cumecs) DATUM RL WSE IN STRUCTURE HGL IN PIPE DEPTH OF INVERT BELOW F INVERT LEVEL FINISHED (& EXISTING) SURFACE LEVEL CHAINAGE LINE	S1222 512229 512229 512229 512229 512229 527234 52724 52725	22 62 0 323 63.181 61.574 1.607 62.095 62.095 7 (61.046) 61.499 1.682 62.025 7	3.22 0.00 61.490 61.490 0.6053 60.892 1.540 61.490 (60.604) 60.872 1.560 61.415	4.66 0.735 1.274 98486 1.266 2.60133 2.8486 1.200 2.60133 2.8486 1.200 2.60133 2.8486 1.200 2.60133 2.8486 2.60133 2.8486 2.60133 2.8486 2.60133 2.8486 2.60133 2.8486 2.6013 2.8486 2.6013 2.8486 2.6013 2.8486 2.9375 2.8486 2.8486 2.9475 2.8486 2.8486 2.9475 2.8486 2.8486 2.9475 2.84866 2.84866 2.84866 2.84866 2.84866 2.	4.26 0.822 1.097 00000000000000000000000000000000000	3.65 3.90 0.909 0.96 1.185 1.26 0.909 0.96 1.185 1.26 0.909 0.96 0.909 0.96 1.185 1.26 0.909 0.96 0.909 0.96 0.909 0.96 0.909 0.96 0.909 0.96 0.909 0.96 0.909 0.96 0.909 0.96 0.909 0.96 0.909 0.96 0.909 0.96 0.909 0.96 0.909 0.96 0.909 0.96 0.909 0.96 0.909 0.96 23.889 40.92 0.909 0.96 0.909 0.96 0.9109 0.96 0.9109 0.97 0.92009 0.91 0.9109 0.91 0.9109 0.91 0.9109 0.91 0.9109 0.91<	0 2.32 35 1.024 39 0.826 2.32 35 1.024 39 0.826 2.32 2.32 2.32 35 1.024 0.826 0.827 0.82	1.25 0.036 0.175 39.0 098.451 1.25 0.000 0.175 39.0 0000 1.25 28.4 1.1408 0.175 39.0 0000 2.125 2.25 0.000 2.25 2.25 0.000 0.175 39.0 0.175 39.0 0.175 39.0 0.175 39.0 0.175 39.0 0.175 39.0 0.175 39.0 0.175 39.0 0.175 39.0 0.175 39.0 0.175 39.0 0.175 39.0 0.175 39.0 0.175 39.0 0.125 1.126 0.125 1.250 0.125 1.250 0.125 1.250 0.125 1.250 0.125 1.250 0.125 1.250 0.125 1.250 0.125 1.250 0.125 1.250 0.125 1.250 0.125 1.250 0.125 1.250 0.125 1.250 0.125 1.250	0000 56.459 1.55 1.55 1.55 1.466 55.317 3.112 3.112 3.112 55.317 3.112 55.317 3.112 55.317 55.317 3.112 55.317 55.317 55.317 55.317 (56.414) 54.993 1.466 55.317 55.317 (56.414) 55.317 55.317 (56.414) 55.317 (56.414) 55.317 (56.414) 55.317 (56.414) 55.317 (56.414) 55.317 (56.414) 55.317 (56.414) 55.317 (56.515) 54.962 55.317 (56.329) 54.562 (56.329) 54.562 (56.329) 54.562 (56.329) 54.562 (56.329) 54.562 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.317 (56.329) 55.325 (57.329) 55.325 (57.329) (57.329) (57.329) (57.329) (57.329) (57.3	1.49 0.0068 0.175 41.0 0.175 41.0 41.0 0.252.35 0.000 41.0 0.252.35 0.000 41.0 0.1315 0.000 41.0 0.000 0.1315 41.0 0.000 0.1315 1.100 0.000 0.1315 0.110 0.000 0.000 3.100 0.000 0.000 3.100 0.000 0.000 32A MIF BECINCT 10.1 SUBDDI	0000 57.94 57.293 56.574 1.369 57.188 57.293



STRUCTURE NAME 92/11 11/30	1/37 1/30 10/30 2/38 9/30	1/39 8/30 8/30 1/40 2/40 3/40 7/30	1/41 3/40 5/40 5/43 6/30 6/30
STRUCTURE DESCRIPTION IPWEA KERB INLET LLIL: 2.4m LINE IPWEA MANHOLE 1050mm DIA	IPWEA KERB INLET L.I.L; 2.4m Lintet IPWEA MANHOLE 1050mm DIA 1050mm DIA L.I.L; 2.4m Lintet L.I.L; 2.4m Lintet IPWEA KERB INLET L.I.L; 2.4m Lintet IPWEA MANHOLE IPWEA MANHOLE 1050mm DIA	IPWEA KERB INLET LI.L; 2.4m Lintel IPWEA MANHOLE 1050mm DIA 1050mm DIA 1050mm DIA 11.L; 2.4m Lintel 1050mm DIA 1050mm DIA	IPWEA KERB INLET (SAG) L.I.L. 2.4m Lintel L.I.L. 2.4m Lintel IPWEA KERB INLET - 600x600 TYPE L.D. GRATE L.D. G
		63.333 CLR 0.591	
PIPE SIZE (mm) 375 PIPE CLASS 2 PIPE GRADE (%) 1.00% PIPE SLOPE (1 in X) 100.0 FULL PIPE VELOCITY (m/s) 0.52 PART FULL VELOCITY (m/s) 1.42 PIPE FLOW (cumecs) 0.058 PIPE CAPACITY AT GRADE (cumecs) 0.175 DATUM RL 43.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	375 375 375 450 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 0.64 0.58 0.83 1.50 0.64 0.092 0.071 0.064 0.092 0.175 0.175 0.285 47.0 48.0	375 225 225 225 225 225 375 2 uPVC uPVC uPVC uPVC uPVC uPVC uPVC 100% 100% 1.00% 1.00% 1.00% 4.00% 1000 0.01 100.0 100.0 100.0 100.0 25.0 0.91 0.48 0.93 0.96 1.22 1.55 1.88 0.81 0.101 0.019 0.037 0.038 0.049 0.062 0.075 0.089 0.063 0.053 0.053 0.053 0.053 0.053 0.053 0.053
WSE IN STRUCTURE 52 53 53 53 53 53 53 53 53 53 53 53 53 53	61.701 98 61.701 90 61.490 15 62.381 40 62.381 32 62.246 32 62.095 95 62.095	63.588 88 63.215 33 65.254 88 65.254 88 65.254 88 65.254 88 65.254 89 65.828 39 64.828 39 64.560	65.092 55 65.092 28 64.828 39 64.828 87 69.138 87 69.138 88 68.940 109 68.940 123 68.788 23 68.788 24 68.235 17 68.235 17 68.235 17 68.235 17 68.235 17 68.235 17 68.235 17 68.235 17 68.235 17 68.235 17 68.235 17 68.235 17 68.235 17 68.235 18 66.268 10 66.268
20 <u>20</u> <u>20</u> <u>20</u> <u>20</u> <u>20</u> <u>20</u> <u>20</u> <u>2</u>	315 61.498 348 61.490 560 61.415 560 61.415 316 62.240 314 62.229 414 62.132 .655 62.095 .682 62.025	15 63.388 08 63.292 88 63.133 88 63.133 32 65.088 32 65.088 99 64.382 90 64.560 80 64.560 80 64.550 80 64.550 80 64.550	15 64.855 16 64.855 90 64.639 90 64.639 90 64.639 91 69.077 92 68.788 99 68.788 99 68.788 99 68.728 99 68.728 99 68.728 99 68.728 99 68.728 99 68.728 99 68.728 90 68.034 91 68.034 92 68.034 93 66.035 94 68.034 95 66.235 95 66.246 98 66.210
DEPTH OF INVERT BELOW FSL 5121 INVERT LEVEL 8883 INVERT LEVEL 8883	.146 1 .085 1 .872 1 .646 1 .626 1 .626 1 .499 1	63.193 1.315 63.126 1.308 63.126 1.308 64.047 1.232 64.767 1.289 64.767 1.289 64.057 1.470 64.057 1.470 63.850 1.780	64.214 1.315 64.131 1.416 64.057 1.490 64.057 1.490 68.543 0.807 68.543 0.807 68.543 0.807 68.543 0.007 68.543 0.007 68.381 0.769 68.381 0.709 68.381 1.019 67.901 1.049 67.881 1.019 67.481 1.049 67.481 1.149 67.481 1.149 67.481 1.149 67.481 1.149 67.484 1.459 66.427 2.423 66.427 2.423 65.845 1.728
FINISHED (& EXISTING) 500 123 28 SURFACE LEVEL 500 123 28 500 120 120 500 120 120 500 120 120 500 120 120 500 120 120 500 1	62.461 60.961 61. (60.961) 61. 61. (60.604) 60. 61. (60.527) 61. 61. (61.046) 61. 61.	64.508 63.08 (62.602) 63. (62.602) 63. (62.246) 61. (62.246) 64. (65.720) 64. (65.745) 64. (65.745) 64. (65.547) 64. (65.547) 64. (65.547) 64. (65.542) 64.	65.529 64.028) 64. (64.028) 64. 65.547 64. (63.547) 64. 65.547 64. (63.545) 64. 65.547 68. (63.545) 68. 68. 69.550 68. (68.877) 68. 68. 68. 68. (67.573) 68. 68. 67. 67. (67.034) 67. 67. 67. 66. 67. (65.920) 68. 67. 66. 67. 66. 67. 66.534 67. (65.920) 67. (65.342) 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67. 66. 67.
CHAINAGE 88 5.927	0000 6.110 9 0000 6.110 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 17 17 17 16 17 16 17 17 16 17 17 16 17 17 16 17 16 17 16 17 17 16 17 17 16 17 17 16 17	Ki Ki<	59 50 59 50 50 59 50<
LINE 36	37 38	39 40	41 43 MIRVAC QLD PTY LTD
B ISSUED FOR CONSTRUCTION 18/08/2023 B 05/12/2022 A ORIGINAL ISSUE DATE REV DESCRIPTION	КК РВ КК РВ REC APP	KLYNT KIWANG CLEAT ANDREW LANGDON 0 PROJECT MANAGER 0 NICK SOMERVILLE 0 PROJECT DIRECTOR HGRIZONTAL 1:100 (A1) PATRICK BRADY RPEQ 7112	 ■ EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPMENT ■ TEVIOT ROAD, GREENBANK

MIR-1001

C412 B

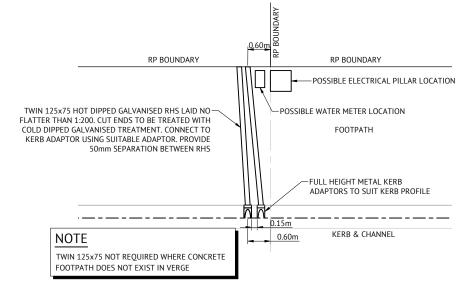
JOB CODE

	1/44B 1/44B 1/44C 1/44B 1/44C 1/44B 1/44C 1/44B	
	STRUCTURE DESCRIPTION	
	SAND BAG AND SEAL TO PIPE END.	
	PIPE SIZE (mm) 375 375 375 375 PIPE CLASS 2 2 2 2 PIPE CLASS 100% 0.50% 0.50% PIPE SLOPE (1 in X) 1000 1000 1000 PIPE SLOPE (1 in X) 0.02 0.55 0.78 PART FULL EVECITY (m/s) 0.32 0.55 0.78 PIPE FLOW (cumecs) 0.035 0.058 0.086 0.102 0.035 0.058 0.086 0.102 0.035 0.058 0.086 0.102 0.035 0.058 0.086 0.102 0.035 0.058 0.086 0.102 0.035 0.058 0.086 0.104 0.124 0.124 0.104 0.175 0.124 0.104 0.175 0.175 0.104 0.175 0.105 0.175 0.104 0.175 0.105 0.175 0.106 0.175 0.107 0.124 0.107 0.107 0.108 0.175 0.107 0.108 0.107 0.100 0.107 0.100	
	MSE IN STRUCTURE 68.065 68.010 68.057 68.069 68.010 68.057 68.057 68.020 68.057 68.050 68.010 67.072 67.020 67.020 67.072 67.020 67.020 67.072 67.020 67.020 67.072 55.520 67.952 67.072 55.751 55.020 55.458 55.020 55.020	
	Image: Number of the second	
	Initial Control Initial Control Initial Control Initial Control 00 69.073 67.09 67.09 01 69.048 67.09 67.09 02 69.048 67.09 67.79 03 69.048 67.79 67.79 04 55.658 67.79 67.79 05 69.048 67.79 67.79 143 56.686 55.220 67.79 155.658 54.10 55.411 155.658 54.10 55.411 155.658 54.10 55.411 155.658 54.10 55.411 155.658 54.10 55.411 155.658 54.10 55.411 155.658 54.10 55.411 155.658 54.10 55.411 155.658 54.10 55.411 155.658 54.10 55.411 155.658 54.10 55.411 155.658 54.10 55.411	
	LINE 44 44A 44B 44C	
Issued for construction 05/12/2022 A ORIGINAL ISSUE	KLYNT KIWANG CLENT MIRVAC QLD PTY LTD Image: Construction of the constr	
B/2023 B ISSUED FOR CONSTRUCTION	BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 KK PB NUCK 30MERVILLE PROJECT DIRECTOR PROJECT DIRECTOR PROJEC	R REV

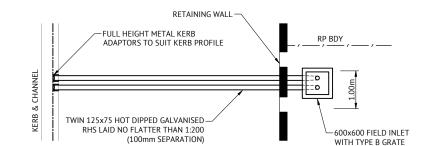
STORMWATER DRAINAGE NOTES

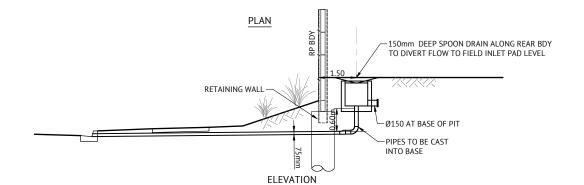
- 1. ALL STORMWATER DRAWINGS ARE TO BE READ IN CONJUNCTION WITH DRAWING
- C001, STORMWATER LAYOUT PLANS, NOTES AND DETAILS.
 STORMWATER PITS ARE TO BE CONSTRUCTED INSITU IN ACCORDANCE WITH DRAWINGS OR AS VARIED AS NOTED ON THE DRAWING. PREFABRICATED STORMWATER PITS CAN BE USED SUBJECT TO WRITTEN APPROVAL FROM THE SUPERINTENDENT. CLASS D HEAVY DUTY GALVANIZED STEEL GRATES ARE TO BE FITTED IN TRAFFIC AREAS, CLASS B LIGHT DUTY GALVANIZED STEEL GRATES ARE TO BE FITTED IN LANDSCAPE AREAS UNLESS NOTED OTHERWISE.
 ALL DRAINAGE EXCAVATION AND CONSTRUCTION SHALL BE CARRIED OUT IN
- ALL DRAINAGE EXCAVATION AND CONSTRUCTION SHALL BE CARRIED OUT IN ACCORDANCE WITH AS3500 AND THE APPLICABLE LOCAL AUTHORITY SPECIFICATIONS AND STANDARD DETAILS.
- ALL MATERIALS SHALL MEET THE REQUIREMENTS OF AS1254 & AS1273.
 ALL UPVC PIPES SHALL BE CLASS 'SN8' FOR DN150 & DN225, AND CLASS 'SN6' FOR DN100 JINE FSS NOTED OTHERWISE
- FOR DN100 UNLESS NOTED OTHERWISE.
 PIPES SHALL BE LAID AT MIN. 1% GRADE UNLESS NOTED OTHERWISE.
 CONTRACTOR MUST VERIFY THAT ALL PIPE LEVELS AND GRADES CAN BE ACHIEVED PRIOR TO CONSTRUCTING DRAIN LINES. ANY CONFLICT SHALL BE
- ACHIEVED PRIOR TO CONSTRUCTING DRAIN LINES. ANY CONFLICT SHALL BE REPORTED TO THE SUPERINTENDENT FOR ANY NECESSARY ALTERATIONS PRIOR TO ANY CONSTRUCTION OF CONNECTING PIPEWORK.
- WHERE PIPES ARE TO BE LAID WITHIN THE ZONE OF INFLUENCE OF STRUCTURAL LOADINGS (e.g. BUILDING FOOTINGS, RETAINING WALLS...etc). THE BUILDER SHALL PROVIDE ADEQUATE BRIDGING / PROTECTION. WHERE ANY DOUBT MAY EXIST REFERENCE SHALL BE MADE TO THE DESIGNER OF THE STRUCTURE.
 BENCHING OF PIT STRUCTURES SHALL HAVE A SMOOTH FINISHED SURFACE, AND
- BENCHING OF PIT STRUCTURES SHALL HAVE A SMOOTH FINISHED SURFACE, AN PIPES SHALL NOT PROJECT INSIDE THE SHAFT OF THE PIT.
- 10. WHERE RECTANGULAR PIT STRUCTURES ARE USED, PIPES MUST NOT CONNECT TO THE PIT AT CORNERS.
- 11. ALL CONSTRUCTION AND EXCAVATIONS SHALL BE CARRIED OUT IN ACCORDANCE WITH THE CURRENT REQUIREMENTS OF THE WORK HEALTH AND SAFETY ACT 2011 AND SUBSEQUENT AMENDMENTS.
- ALL STORMWATER PIPES SHALL BE CLASS '2' (UNO) R.C. PIPES UNLESS AN ALTERNATIVE IS APPROVED BY THE SUPERINTENDENT PRIOR TO CONSTRUCTION.
 ALL TEMPORARY ROOFWATER OUTLETS TO BE EXCAVATED AT 1 IN 200 TO
- NATURAL SURFACE. 14. ALL ROOFWATER PIPES CROSSING CONCRETE FOOTPATHS ARE TO BE INSTALLED
- PRIOR TO CONSTRUCTION OF CONCRETE FOOTPATHS.
- INSTALL 150mm DIAMETER PVC ROOFWATER HOUSE CONNECTION STUB INTO ROOFWATER PITS. INSTALL AT 750mm DEPTH TYPICAL OR 50mm FROM THE BASE OF PIT (WHICHEVER IS SHALLOWER).

REFERENCE POINT LOCATION FOR DRAINAGE STRUCTURES


STRUCTURE TYPE	HORIZONTAL CONTROL POINT [REFERENCE POINT LOCATION]	VERTICAL CONTROL REFERENCE LEVEL
MANHOLE	CENTRELINE OF MAIN SHAFT	FINISHED SURFACE LEVEL AT CENTRE OF MAIN SHAFT
GULLY PIT OVER MANHOLE	GULLY PIT	LIP LEVEL
GULLY PIT (LIP IN LINE)	CENTRE OF GULLY PIT	LIP LEVEL
HEADWALL	INTERSECTION OF HEADWALL FACE AND PIPE CENTRE LINE	INVERT LEVEL
FIELD INLET	CENTRE OF PIT	TOP OF CONCRETE PIT
ROOFWATER PIT	CENTRE OF PIT	TOP OF GRATE

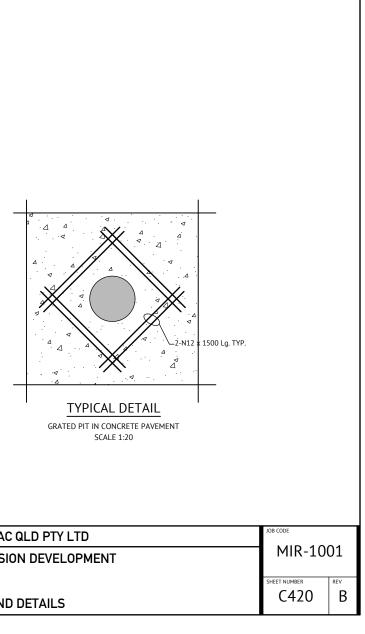
EXCAVATION IN ROCK NOTE:

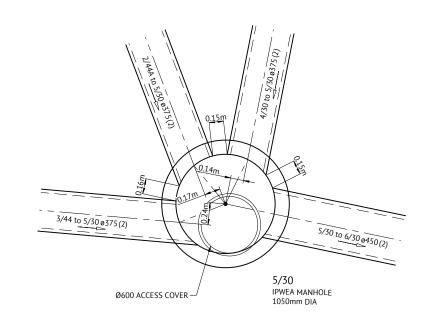

CONTRACT SHALL INCLUDE TREATING, SIZING CONDITIONING AND PROCESSING ALL TYPES OF ROCK IN ALL EXCAVATIONS. PROCESSING TO BE COMPLETED AS PER MORRISON GEOTECHNICAL REPORTS TO ENSURE LEVEL 1 IS ACHIEVED.

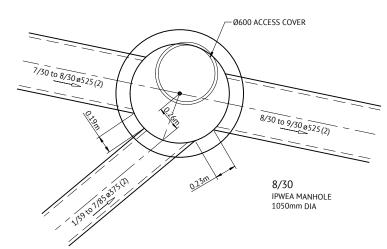

TRENCH SPOIL NOTE:

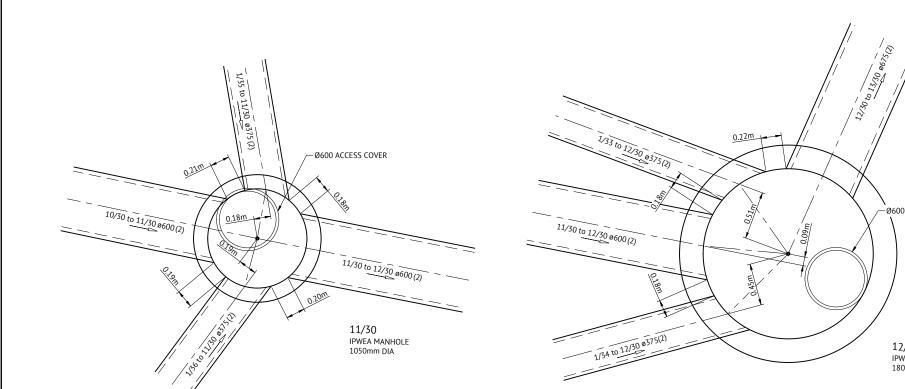
SPOILAGE OF EXCESS MATERIAL TO BE PLACED INTO THE SOUTHERN DAM REHABILITATION AREA INCLUDING ALL LEVEL ONE COMPACTION REQUIREMENTS AND TESTING IN ACCORDANCE WITH MORRISON GEOTECHNICAL SPECIFICATION AND ALL LOCAL AUTHORITY STANDARDS, AND SHALL BE FREE DRAINING.

TYPICAL ROOFWATER PROPERTY PIT TO KERB ADAPTOR OUTLET DETAIL

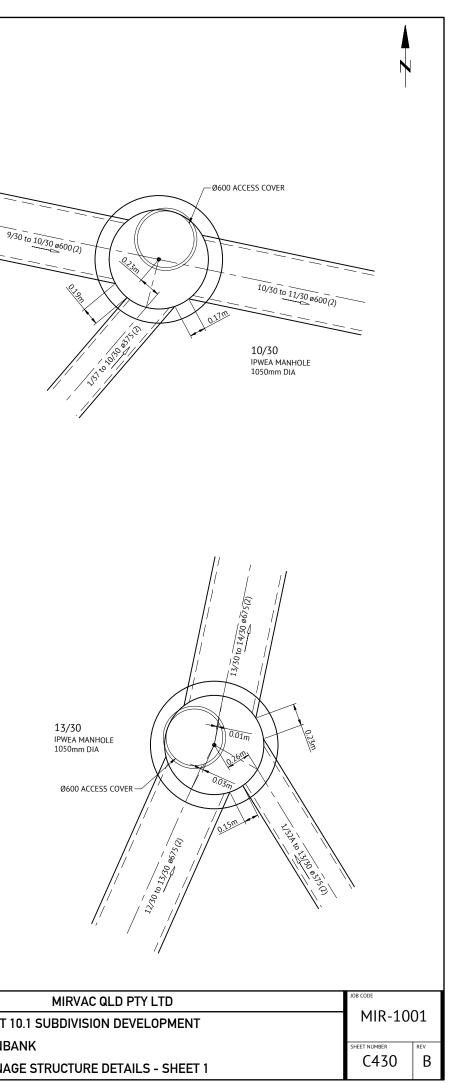

N.T.S.

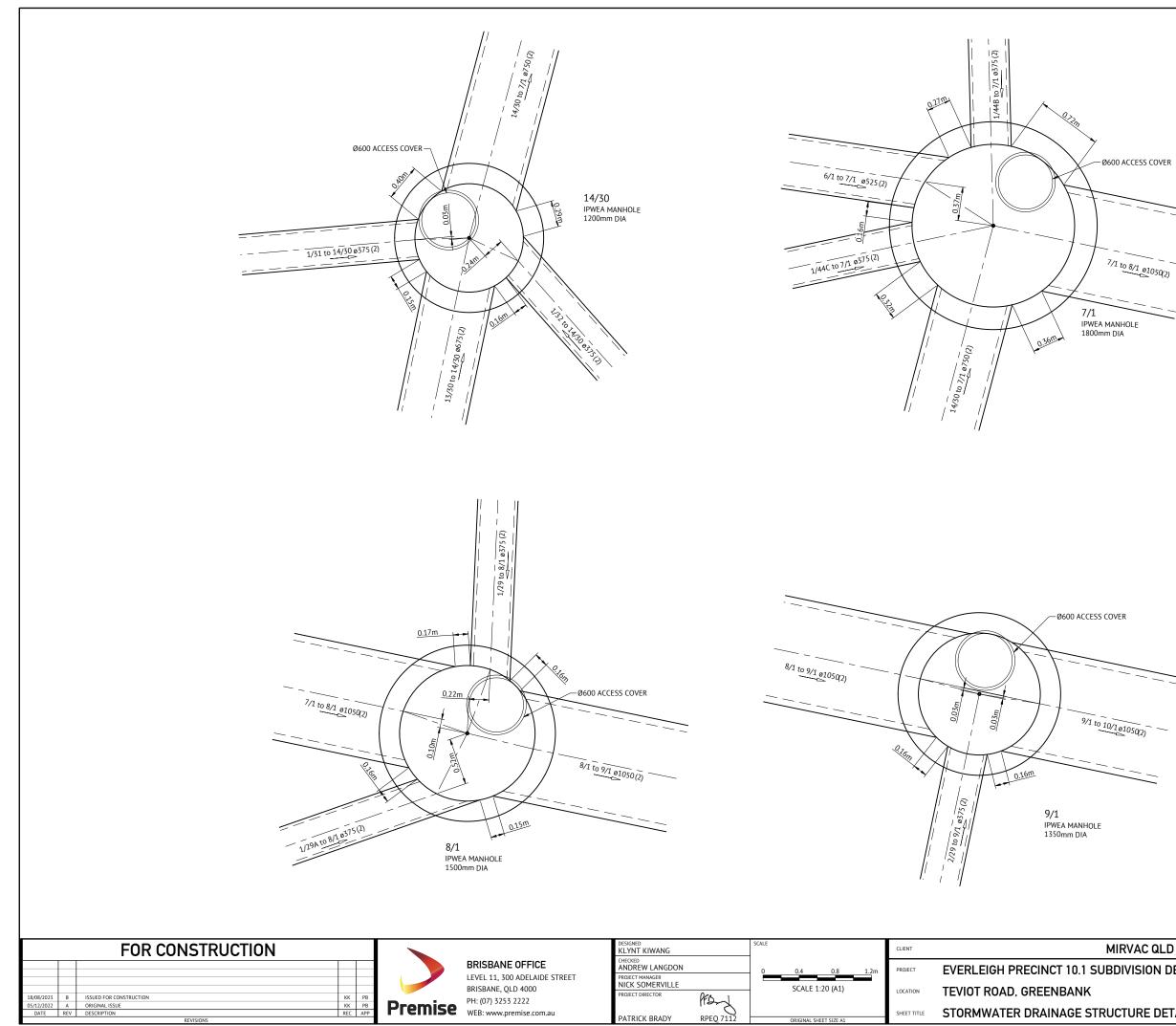

AINAGE LENGTHS ARI


STORMWATER DRAINAGE LONG SECTION CHAINAGE LENGTHS ARE MEASURED FROM NODE CENTRE POINTS ALONG THE PROPOSED ALIGNMENT INCLUDING PIPE OFFSETS SUCH AS TO CENTRE OF PIT SIDE WALL AND CUSTOM PIPE SPACING INTO STRUCTURES. REFER STORMWATER DRAIANGE STRUCTURE DETAILS DRAWINGS.


NOTE:

FOR CONSTRUCTION		designed KLYNT KIWANG	SCALE	CLIENT	MIRVAC
	BRISBANE OFFICE	CHECKED ANDREW LANGDON PROJECT MANAGER	NTS	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISIO
18/08/2023 B ISSUED FOR CONSTRUCTION KK PB	BRISBANE, QLD 4000 PH: (07) 3253 2222	NICK SOMERVILLE PROJECT DIRECTOR	-	LOCATION	TEVIOT ROAD, GREENBANK
05/12/2022 A ORIGINAL ISSUE KK PB DATE REV DESCRIPTION REC APP		PATRICK BRADY RPEQ 7112	ORIGINAL SHEET SIZE A1	SHEET TITLE	STORMWATER DRAINAGE NOTES AND




13/30

-Ø600 ACCESS COVER

12/30 IPWEA MANHOLE 1800mm DIA

FOR CONSTRUCTION					DESIGNED KLYNT KIWANG		SCALE		CLIENT	MIRVAC
				BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	CHECKED ANDREW LANGDON PROJECT MANAGER		0	0.4 0.8 1.2m	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISIO
18/08/2023 B ISSUED FOR CONSTRUCTION	KK F	РВ		BRISBANE, QLD 4000 PH: (07) 3253 2222	NICK SOMERVILLE PROJECT DIRECTOR	PFD		SCALE 1:20 (A1)	LOCATION	TEVIOT ROAD, GREENBANK
05/12/2022 A ORIGINAL ISSUE DATE REV DESCRIPTION REVISIONS	KK F REC A	PB .PP	Premise	WEB: www.premise.com.au	PATRICK BRADY	RPEQ 7112		ORIGINAL SHEET SIZE A1	SHEET TITLE	STORMWATER DRAINAGE STRUCTURE

AC QLD PTY LTD	JOB CODE	
SION DEVELOPMENT	MIR-10)1
	SHEET NUMBER	REV
RE DETAILS - SHEET 2	C431	В

N

	LOCATION TIME SUB-CATCHMENT RUNOFF INLET DESIGN Design Levels PART Full DESIGN LEVEls DESIGN LEVEls k																																												
				-											tc I	CA		Qp					Vf=Q	/A		STRI	JCTURE	E RATIC				Kw	hw	Sf	hf	dn	Vn						-		
STRUCTURE NUMBER DOWNSTREAM STRUCTURE	SUB-CATCHMENTS CONTRIBUTING	SUB-CATCHMENT TIME OF CONCENTRATION RAINFALL INTENSITY	CO-EFFICIENT OF RUNOFF	SUB-CATCHMENT AREA	EOUIVALENT AREA	SUB-CATCHMENT	DISCHARGE FLOW IN K&C	(INC. BYPASS) FLOW WIDTH	FLOW DEPTH	ROAD GRADE AT INLET	HALF ROAD CAPACITY	FLOW INTO INLET	BYPASS FLOW	RUC	CRITICAL TIME OF CONCENTRATION RAINFALL INTENSITY	TOTAL (C × A)	SUM ADDITIONAL PIPE FLOW	PIPE FLOW	REACH LENGTH	PIPE GRADE	PIPE/BOX DIMENSIONS	CLASS	FULL PIPE VELOCITY	OF F	CHARTS USED	09/00		S/Do	VELOCITY HEAD	UPSTREAM HEADLOSS CO-EFFICIENT	UPSTREAM HEADLOSS	W.S.E. CO-EFFICIENT	CHANGE IN W.S.E.	PE FRICTION SLOPE	PIPE FRICTION HEADLOSS (L × Sf)	DEPTH	DEPTH VEL STORM)	L DEPTH VEL (STORM)	UPSTREAM OBVERT LEVEL	DOWNSTREAM OBVERT LEVEL	UPSTREAM H.G.L.	DOWNSTREAM H.G.L.	W.S.E.	SURFACE OR GRATE LEVEL	STRUCTURE NUMBER
		min mm/h	n	ha	ha				m	%	l/s	l/s	l/s		min mm/	n ha	l/s	l/s	m	%	mm		m/s	min					m		m		m	%	m	m	m/s	m/s	m	m	m	m	m	m	
6/1 7/1	1/49 2/49 1/1 2/1 3/1 4/1 1/46A 1/46B														8.86 110	1.101	0	308	55.215	2.280	525	2	1.42	0.46	37 42 43	0.00	1.00	1.18	0.103	0.88	0.091	0.90	0.093	2.29	1.259	0.255	2.96	2.76 56	5.419	55.160	56.271	55.003	56.364	57.962	6/1
7/1 8/1	1/31 1/32 1/32A 1/33 1/34 1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/44 2/44 3/44 1/44A 2/44A 1/44B 1/44C 1/49 2/49 1/1 2/1 3/1 4/1 1/46A 1/46B														10.66 103	4.943	0	1422	52.564	0.700	1050	2	1.64	0.44	42 46 43	47 0.00	1.00	1.22	0.138	1.56	0.214	1.68	0.232	0.76	0.365	0.600	2.78	2.58 55	5.160 5	54.792	54.789	54.391	55.020	56.686	7/1
8/1 9/1	1/29 1/29A 1/31 1/32 1/32A 1/33 1/34 1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/4AA 2/4AA 1/30 2/30 3A/30 4/30 1/44B 1/44C 1/49 2/49 1/1 2/1 3/1 4/1 1/46A 1/46B														10.80 103	5.102	0	1462	24.738	1.317	1050	2	1.69	0.21	33 34	0.00	1.00	1.03	0.145	0.21	0.030		0.030	1.22	0.324	0.504	3.56	3.28 54	4.722 5	54.397	54.360	54.059	54.391	56.161	8/1
9/1 10/1	1/28 2/28 1/29 1/29A 1/31 1/32 1/32A 1/33 1/34 1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/46A 2/44A 1/30 2/30 3A/30 4/30 1/44B 1/44C 1/49 2/49 1/1 2/1 3/1 4/1 1/46A 1/46B														11.01 102	5.300	0	1509	79.505	1.000	1050	2	1.74	0.66	33 34	0.00	1.00	1.03	0.155	0.21	0.033		0.033	0.96	0.793	0.557	3.23	2.99 54	4.377 5	53.581	54.026	53.262	54.059	55.913	9/1
10/1																																											53.262	54.655	10/1
TE1/28 9/1	1/28 2/28	0.00 0		0.000	0.00	0 0	0			1.00		0 0	,		8.18 112	0.198	0	62	2.400	1.000	375	2	0.56	0.02					0.016	0.00	0.000		0.000	2.12	0.014	0.154	1.45	1.34 54	4.401	54.377	54.206	54.155	54.206	55.929	TE1/28
1/29 8/1	1/29	6.00 122	0.76	0.149	0.11	.3 38	39	2.404	4 0.069	1.00	127	39 0		1/24C	6.00 122	0.113	0	39	4.741	1.006	375	2	0.36	0.04	32	1.00		1.17	0.006	9.70	0.063		0.063	1.46	0.039	0.121	1.28	1.17 55	5.120	55.072	54.887	54.817	54.950	56.060	1/29
1/29A 8/1	1/29A	8.00 113	0.75	0.123	0.09	2 29	29	2.134	4 0.062	1.00	127	29 0	. :	1/28	8.00 113	0.092	0	29	14.506	1.019	375	2	0.26	0.12	32	1.00		1.09	0.003	9.70	0.034		0.034	1.13	0.140	0.103	1.17	1.08 55	5.069	54.921	54.816	54.649	54.850	56.178	1/29A
1/30 2/30	1/30	8.00 113	0.75	0.111	0.08	3 26	26		0.000	2.46	375	26 0		2/30	8.00 113	0.083	0	26	9.429	1.008	375	2	0.24	0.08	32	1.00		1.07	0.003	9.70	0.028		0.028	0.57	0.078	0.098	1.14	1.05 68	3.514 6	68.419	68.254	68.200	68.282	69.455	1/30
2/30 3/30	1/30 2/30	6.00 122	0.76	0.071	0.05	i4 18	22		0.000	0.80	375	22 0) :	1/44A	8.08 113	0.137	0	47	11.380	1.005	375	2	0.42	0.10	46 47	0.46	1.00	1.06	0.009	2.28	0.021	2.66	0.024	1.21	0.105	0.132	1.34	1.21 68	3.399	68.284	68.179	68.041	68.203	69.447	2/30
3/30 3A/30	1/30 2/30														8.17 112	0.137	0	46	29.440	1.000	375	2	0.42	0.25	42 46 43	47 0.00	1.00	1.05	0.009	1.86	0.017	2.24	0.020	0.93	0.290	0.132	1.34	1.21 68	3.124	67.830	67.905	67.631	67.925	69.680	3/30
3A/30 4/30	1/30 2/30 3A/30	6.00 122	0.76	0.057	0.04	3 15	15	1.784	4 0.054	0.64	92	15 0		4/30	8.42 111	0.180	0	59	43.621	1.000	375	2	0.54	0.36	33 34	0.24	1.00	1.05	0.015	1.29	0.019		0.019	0.83	0.401	0.150	1.43	1.3 67	7.810	67.374	67.612	67.250	67.631	69.389	3A/30
4/30 5/30	1/30 2/30 3A/30 4/30	6.00 122	0.76	0.044	0.03	53 11	11	1.634	4 0.05:	. 0.62	85 :	11 0		1/41	8.78 110	0.213	0	69	14.024	1.001	375	2	0.62	0.12	33	0.16	1.00	1.05	0.020	0.92	0.018		0.018	0.03	0.022	0.163	1.49	1.36 67	7.354 6	67.213	67.232	67.228	67.250	69.113	4/30

		FOR CONSTRUCTION				
						BRISBAN
						LEVEL 11, 3
						BRISBANE,
18/08/2023	В	ISSUED FOR CONSTRUCTION	КК	PB		PH: (07) 32
05/12/2022	Α	ORIGINAL ISSUE	KK	PB	Premise	
DATE	REV	DESCRIPTION	REC	APP	FIEIIISE	WEB: www.
		PEVISIONS				

DESIGNED KLYNT KI	ANG	SCALE	CLIENT	MIRVAC QLI
BRISBANE OFFICE ANDREW	NGDON		PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISION [
LEVEL 11, 300 ADELAIDE STREET PROJECT MAN				
BRISBANE, QLD 4000 NICK SOM		_	LOCATION	TEVIOT ROAD, GREENBANK
PROJECT DIRE	" PFD-1			TEVIOT ROAD, OREERDARIK
WEB: www.premise.com.au PATRICK	. 0	ORIGINAL SHEET SIZE A1	SHEET TITLE	STORMWATER CALCULATIONS 39% AEP S

STORM - SHEET 1

DEVELOPMENT

_D PTY LTD

DB CODE MIR-1001

HEET NUMBER

C440

REV

В

			1																																				. I							
	L	LOCATION	_	TIME	С	SUB-C	-	1ENT R	UNOFF		1		NLET D	ESIGN 2g Qb		tc	1	CA	-	Qp		IN DES			Vf=Q/	Δ		CTDI	JCTURE RATI					bw	Cf	hf		RT FUL Vn				DES	SIGN LEV	/ELS	-	
STRUCTURE NUMBER	DOWNSTREAM STRUCTURE	SUB-CATCHMENTS CONTRIBUTING	SUB-CATCHMENT TIME OF CONCENTRATION	. INTENSITY	CO-EFFICIENT OF RUNOFF	SUB-CATCHMENT AREA	EQUIVALENT AREA	NT		FLOW WIDTH	FLOW DEPTH	ROAD GRADE AT INLET	PACITY	BYPASS FLOW	CTURE		INTENSITY	TOTAL (C × A)	SUM ADDITIONAL PIPE FLOW		REACH LENGTH	IPE GRADE	IPE/BOX DIMENSIONS	TASS	EULL PIPE VELOCITY	TIME OF FLOW	IN REACH CHARTS USED	00/00			TREAM HEADLOSS		FFICIENT	CHANGE IN W.S.E. ₹	-	PE FRICTION HEADLOSS × Sf)	рертн	AL DEPTH VELOCITY R STORM)	L DEPTH VELOCITY STORM)		DOWNSTREAM OBVERT LEVEL	UPSTREAM H.G.L.	DOWNSTREAM H.G.L.	W.S.E.	SURFACE OR GRATE LEVEL	STRUCTURE NUMBER
S	Δv	0.0		≃∠ mm/h	0	∽ ha	на							⊥ <u>∩</u> /s l/s		_	ע mm/h	-	l/s			<u> </u>	 mm		m/s			0/		<u>с ></u> п		0 <u>=</u>		 	<u>م</u> %	а п (Г	z m	z ∈ m/s		 	<u>ر ک</u> m	 	 	 	 	S
5/30	6/30	1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30				0.000			0			0.09			1/39			0.599			32.782				1.21		46 47	0.00	1.00 1.4																	5/30
6/30	7/30	1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30														8.68	110	0.886	0	270	42.956	4.400	450	2	1.70	0.36	34 37	0.00	1.00 1.1	3 0.14	7 0.4	10 0.05	8	0.058	3.84	1.698	0.212	3.66	3.41 66	.295 e	4.405	66.210	64.560	66.268	67.573	6/30
7/30	8/30	1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/444 1/30 2/30 3A/30 4/30	0.00	0		0.000	0.000	0	0		0.000		0	0		8.75	110	1.672	0	516	31.812	3.819	525	2	2.39	0.27	34 37	0.00	1.00 1.4	0 0.29	0 0.7	72 0.20)8	0.208	3.58	1.171	0.298	4.08	3.79 64	.405 6	3.190	64.352	63.215	64.560	65.660	7/30
8/30	9/30	1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30														9.02	109	1.968	0	579	43.732	2.450	525	2	2.68	0.36	33 34	0.00	1.00 1.1	6 0.36	5 0.2	2 0.08	32	0.082	2.37	1.061	0.375	3.50	3.3 63	.170 6	2.099	63.133	62.095	63.215	64.434	8/30
9/30	10/30	1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30		0		0.000	0.000	0	0		0.000		0	0		9.36	108	2.298	0	672	26.767	2.266	600	2	2.38	0.22	33 34	0.00	1.00 1.1	2 0.28	88 0.2	24 0.07	'0	0.070	2.00	0.580	0.380	3.57	3.33 62	.099 6	1.492	62.025	61.490	62.095	63.181	9/30
10/30	11/30	1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30														9.51	107	2.503	0	735	55.453	4.303	600	2	2.60	0.46	33 34	0.00	1.00 1.1	3 0.34	4 0.2	22 0.07	'5	0.075	4.13	2.327	0.327	4.66	4.34 61	.472 5	9.086	61.415	59.124	61.490	62.433	10/30
11/30	12/30	1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30														9.47	107	2.797	0	822	73.476	3.191	600	2	2.91	0.61	33 34	0.00	1.00 1.1	6 0.43	51 0.2	23 0.09	18	0.098	2.51	1.874	0.388	4.26	3.99 59	.066 5	6.722	59.026	57.178	59.124	60.172	11/30
12/30	13/30	1/33 1/34 1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/4A 2/44A 1/30 2/30 3A/30 4/30														10.59	Ə 103	3.217	0	909	23.888	1.987	675	2	2.54	0.20	42 46 43 43	7 0.00	1.00 1.9	0 0.32	9 1.6	64 0.53	8 1.85	0.610	1.64	0.442	0.443	3.65	3.43 56	.722 5	6.247	56.640	56.249	57.250	57.776	12/30
13/30		1/32A 1/33 1/34 1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44 2/44A 1/30 2/30 3A/30 4/30														10.28	8 104	3.400	0	965	40.912	2.276	675	2	2.70	0.34	33 34	0.00	1.00 1.1	3 0.37	1 0.2	24 0.09	21	0.091	2.06	0.885	0.441	3.90	3.66 56	.227 5	5.296	56.158	55.317	56.249	57.248	13/30
14/30	7/1	1/31 1/32 1/32A 1/33 1/34 1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30														10.62	2 103	3.521	0	1024	12.606	0.550	750	2	2.32	0.11	33 34	0.00	1.00 1.0	8 0.27	/4 0.2	22 0.06	51	0.061	1.24	0.094	0.750	2.32	2.12 55	.296 5	5.227	55.256	55.099	55.317	56.515	14/30
	14/30					0.063		_	36		-	+ +	375 36		1/32			0.048			5.871	_		2	0.33	0.05		1.00				0 0.05			_								55.317			
1/32 1/32A	14/30 13/30					0.098		-	38	2 700			375 38 179 68		1/29A			0.073	0	38 68	3.051	-	375	2	0.34	0.03		1.00	-			0 0.05		-									55.317 56.249			
1/32A 1/33	13/30					0.309	-	_	82 70		-		179 68 198 58		1/32 1/31	_	113	0.231	0	68 58	3.051 8.824	1.048	375 375	2	0.61	0.03		1.00				70 0.18			0.06				1.38 56 1.33 56				56.249		-	
L		1/34	8.00				-	-	65			+ +	220 55		1/32A		_	0.168	1-	55	13.574											0.10														1/34

	FOR CONSTRUCTION

23 B ISSUED FOR CONSTRUCTION 22 A ORIGINAL ISSUE REV DESCRIPTION

8/08/2023

КК

DESIGNED KLYNT KIWANG	SCALE	CLIENT	MIRVAC QLD PTY LTD
CHECKED ANDREW LANGDON		PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPMI
PROJECT MANAGER NICK SOMERVILLE		105171011	
PROJECT DIRECTOR		LOCATION	TEVIOT ROAD, GREENBANK
PATRICK BRADY RPEO 7112	ODICINAL SHEET SIZE A1	SHEET TITLE	STORMWATER CALCULATIONS 39% AEP STORM - SHE

EP STORM - SHEET 2

ION DEVELOPMENT

JOB CODE

HEET NUMBER

C441

MIR-1001

REV

В

5.462	55.307	55.317	55.360	56.461	1/31
5.337	55.317	55.317	55.374	56.459	1/32
6.263	56.251	56.249	56.438	57.235	1/32A
6.859	57.188	57.178	57.293	57.944	1/33
6.853	57.192	57.178	57.293	58.061	1/34
			100	CODE	

LOCATION TIME SUB-CATCHMENT RUN tc I C A CA Q Z H I								UNOFF			ILET D	ESIGN	tc		CA		Qp	DRAI	N DESIG	5N		Vf=Q/A														FULL	
STRUCTURE NUMBER	DOWNSTREAM STRUCTURE	SUB-CATCHMENTS CONTRIBUTING	SUB-CATCHMENT		CO-EFFICIENT OF RUNOFF	로 SUB-CATCHMENT AREA >	ह EQUIVALENT AREA	SUB-CATCHMENT K SUB-CATCHMENT K	FLOW IN K&C (INC. BYPASS)	% ROAD GRADE AT INLET	ELOW INTO INLET	S BYPASS FLOW	BYPASS STRUCTURE NUMBER	CRITICAL TIME OF CONCENTRATION	RAINFALL INTENSITY	로 TOTAL (C × A)	SUM ADDITIONAL		3 REACH LENGTH	% PIPE GRADE	BIPE/BOX DIMENSIONS	CLASS	PIPE VELOCITY	TIME OF FLOW	CHARTS USED	09/00	Du/Do	S/Do	3 VELOCITY HEAD	UPSTREAM HEADLOSS		W.S.E. CO-EFFICIENT	3 CHANGE IN W.S.E.		<pre>PIPE FRICTION HEADLOSS (L x Sf)</pre>	-	NORMAL DEPTH VELOCITY =
6/1	7/1	1/49 2/49 1/1 2/1 3/1 4/1 1/46A 1/46B				ila		4.	4.	70					243		0	625	55.215	2.280	525	2	2.89		34 37	0.00	1.00	1.45	0.425	0.56	0.236	(0.236	2.22	1.245	0.414	
7/1	8/1	1/31 1/32 1/32A 1/33 1/34 1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/45 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30 1/44B 1/44C 1/49 2/49 1/1 2/1 3/1 4/1 1/46A 1/46B												10.36	230	6.562	0	1823	52.564	0.700	1050	2	2.10	0.44	37 42 43	0.00	1.00	1.28	0.226	1.26	0.284	1.32	0.298	0.62	0.364	0.709	2.9
8/1	9/1	1/29 1/29A 1/31 1/32 1/32A 1/33 1/34 1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/4AA 2/44A 1/30 2/30 3A/30 4/30 1/44B 1/44C 1/49 2/49 1/1 2/1 3/1 4/1 1/46A 1/46B												10.80	227	6.835	0	2042	24.738	1.317	1050	2	2.36	0.21	33 34	0.00	1.00	1.06	0.284	0.24	0.068	0	0.068	0.88	0.300	0.618	3.8
9/1	10/1	1/28 2/28 1/29 1/29A 1/31 1/32 1/32A 1/33 1/34 1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3/30 4/30 1/44B 1/4C 1/49 2/49 1/1 2/1 3/1 4/1 1/46A 1/46B												11.01	225	7.099	0	2286	79.505	1.000	1050	2	2.64	0.66	33 34	0.00	1.00	1.08	0.356	0.24	0.084		0.084	0.88	0.772	0.735	3.53
10/1																																					
TE1/28	9/1	1/28 2/28	0.00	0		0.000	0.000	0	0	1.00	0	0		8.18	250	0.264	0	294	2.400	1.000	375	2	2.66	0.02					0.362	0.00	0.000	(0.000	3.23	0.068	0.375	2.66
1/29	8/1	1/29	6.00	275	1.00	0.149	0.149	114	593	1.00	248	345	1/24C	6.00	275	0.149	0	248	4.741	1.006	375	2	2.25	0.04	32	1.00		3.40	0.257	3.36	0.865	(0.865	2.33	0.094	0.375	2.2
1/29A	8/1	1/29A	8.00	252	1.00	0.123	0.123	86	2243	1.00	64	2179	1/28	8.00	252	0.123	0	278	14.506	1.019	375	2	2.51	0.12	32	1.00		3.96	0.323	2.77	0.893	(0.893	2.58	0.370	0.375	2.51
1/30	2/30	1/30	8.00	252	1.00	0.111	0.111	78	78	2.46	22	56	2/30	8.00	252	0.111	0	22	9.429	1.008	375	2	0.20	0.08	32	1.00		1.05	0.002	9.70	0.020	(0.020	-0.01	0.003	0.090	1.09
2/30	3/30	1/30 2/30	6.00	275	1.00	0.071	0.071	54	297	0.80	44	253	1/44A	8.08	251	0.182	0	61	11.380	1.005	375	2	0.55	0.10	32 46 47	0.66	1.00	1.21	0.016	4.71	0.074	4.96 (0.078	-0.01	0.015	0.153	1.4
3/30	3A/30	1/30 2/30												8.17	250	0.182	0	61	29.440	1.000	375	2	0.55	0.25	42 46 43 47	0.00	1.00	1.41	0.015	1.86	0.029	2.24	0.034	0.12	0.035	0.152	1.44
3A/30	4/30	1/30 2/30 3A/30	6.00	275	1.00	0.057	0.057	44	44	0.64	44	0	4/30	8.42	248	0.239	0	99	43.621	1.000	375	2	0.89	0.36	33 34	0.42	1.00	2.06	0.041	1.56	0.063	(0.063	0.32	0.138	0.201	1.63
4/30	5/30	1/30 2/30 3A/30 4/30	6.00	275	1.00	0.044	0.044	33	33	0.62	33	0	1/41	8.78	244	0.283	0	126	14.024	1.001	375	2	1.14	0.12	33	0.25	1.00	2.74	0.066	0.92	0.061	(0.061	0.52	0.072	0.235	1.7

		ON	FOR CONSTRUCTI		
1					
	PB	K	ISSUED FOR CONSTRUCTION	В	18/08/2023
Dro	PB	K	ORIGINAL ISSUE	Α	05/12/2022
	APP	RE	DESCRIPTION	REV	DATE

	BRISBANE OFFICE
	LEVEL 11, 300 ADELAIDE STREET
	BRISBANE, QLD 4000
Inomico	PH: (07) 3253 2222
remise	WEB: www.premise.com.au

DESIGNED KLYNT KIWANG		SCALE	CLIENT	MIRVAC QLD PTY LTD
CHECKED ANDREW LANGDON			PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPM
PROJECT MANAGER NICK SOMERVILLE			LOCATION	
PROJECT DIRECTOR	FD		LOCATION	TEVIOT ROAD, GREENBANK
PATRICK BRADY	O RPEQ 7112	ORIGINAL SHEET SIZE A1	SHEET TITLE	STORMWATER CALCULATIONS 1% AEP STORM - SHE

STORM - SHEET 1

ON DEVELOPMENT

OB CODE MIR-1001

HEET NUMBER

C443

NORMAL DEPTH VELOCITY ≶ F SURFACE OR GRATE LEVEL DOWNSTREAM OBVERT LEVEL MAJOR SURFACE FLOW STRUCTURE NUMBER UPSTREAM OBVERT LEVEL DOWNSTREAM H.G.L. DEPTH × VELOCITY PRODUCT MAJOR SURFACE FLOW CAPACITY UPSTREAM H.G.L. W.S.E. m/s m m m m m m l/s l/s m²/s 3.41 56.419 55.160 56.391 55.164 56.627 57.962 6/1 2.93 55.160 54.792 54.880 54.554 55.178 56.686 7/1 3.85 54.722 54.397 54.486 54.268 54.554 56.161 8/1 3.53 54.377 53.581 54.184 53.488 54.268 55.913 9/1 10/1 53.488 54.655 2.66 54.401 54.377 54.439 54.362 54.439 55.929 TE1/28 2.25 55.120 55.072 55.156 55.045 56.021 56.060 2245 593 0.18 1/29 2.51 55.069 54.921 55.285 54.903 56.178 56.178 2245 2243 0.42 1/29A 1.09 68.514 68.419 68.342 68.343 68.362 69.455 1867 78 1/30 1.45 68.399 68.284 68.269 68.270 68.347 69.447 1548 297 2/30 1.44 68.124 67.830 68.242 68.207 68.276 69.680 3/30 1.63 67.810 67.374 68.143 68.005 68.207 69.389 1529 44 0.04 3A/30 1.73 67.354 67.213 67.944 67.871 68.005 69.113 1529 33 0.03 4/30

DESIGN LEVELS

RUNOFF

REV В

STRUCTURE NUMBER	DOWNSTREAM STRUCTURE	STA		-	C E	A	CA	Q			Qg	Qb		tc	DRAIN DESIGN I CA Qp L S Vf=Q/A											HEADLOSSES I STRUCTURE RATIOS V2/2g Ku hu Kw hw Sf hf										dn	Vn	1
STRUCTURE NUMBER	ISTREAM CTURE	NTS STATE	ATION		一世	1				1	1				<u> </u>	CA		ŲΡ		S		-		-		SIRU		ATIUS										Т
	DOWN STRUC	SUB-CATCHMENTS CONTRIBUTING	SUB-CATCHMENT TIME OF CONCENTRATION	RAIN	CO-EFFICIENT OF RUNOFF	SUB-CATCHMENT AREA	EQUIVALENT AREA	SUB-CATCHMENT DISCHARGE			FLOW INTO INLET	BYPASS FLOW	BYPASS STRUCTURE NUMBER	CRITICAL TIME OF CONCENTRATION		TOTAL (C x A)	SUM ADDITIONAL PIPE FLOW	PIPE FLOW	REACH LENGTH	PIPE GRADE	PIPE/BOX DIMENSIONS	CLASS	FULL PIPE VELOCITY	TIME OF FLOW IN REACH	CHARTS USED	Qg/Qo	Du/Do	S/Do	VELOCITY HEAD	UPSTREAM HEADLOSS CO-EFFICIENT		W.S.E. CO-EFFICIENT	CHANGE IN W.S.E.	PIPE FRICTION SLOPE	PIPE FRICTION HEADLOSS (L × Sf)	1	NORMAL DEPTH VELOCITY	
			min	mm/h	1	ha	ha	l/s	l/s	%	l/s	l/s		min	mm/h	ha	l/s	l/s	m	%	mm		m/s	min					m		m		m	%	m	m	m/s	╇
5/30 6	6/30	1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30	0.00	0		0.000	0.000	0	345	0.09	0	345	1/39	8.41	248	0.814	0	436	32.782	2.740	450	2	2.74	0.27	46 47	0.00	1.00	2.66	0.383	1.78	0.681	1.95	0.745	2.38	0.795	0.341	3.37	e
6/30 7		1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30												8.59	246	1.204	0	501	42.956	4.400	450	2	3.15	0.36	33 34	0.00	1.00	1.29	0.507	0.25	0.129		0.129	3.61	1.559	0.315	4.21	6
7/30 8	8/30	1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30	0.00	0		0.000	0.000	0	0		0	0		8.75	244	2.257	0	727	31.812	3.819	525	2	3.36	0.27	34 37	0.00	1.00	1.62	0.575	0.42	0.239		0.239	2.85	0.907	0.377	4.37	e
8/30		1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/444 1/30 2/30 3A/30 4/30												9.02	242	2.653	0	740	43.732	2.450	525	2	3.42	0.36	33 34	0.00	1.00	1.79	0.596	0.21	0.126		0.126	2.96	1.294	0.525	3.42	
9/30 1		1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30	0.00	0		0.000	0.000	0	0		0	0		9.36	239	3.094	0	829	26.767	2.266	600	2	2.93	0.22	33 34	0.00	1.00	1.18	0.438	0.24	0.106		0.106	1.98	0.555	0.444	3.70	
10/30 1	11/30	1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30												9.51	237	3.368	0	843	55.453	4.303	600	2	2.98	0.46	33 34	0.00	1.00	1.16	0.454	0.21	0.095		0.095	4.14	2.321	0.357	4.82	,
11/30 1	12/30	1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/45 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30												9.47	238	3.759	0	867	73.476	3.191	600	2	3.07	0.61	33 34	0.00	1.00	1.18	0.480	0.22	0.106		0.106	2.60	1.929	0.403	4.30	!
12/30 1	13/30	1/33 1/34 1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/4A 2/44A 1/30 2/30 3A/30 4/30												10.08	232	4.256	0	866	23.888	1.987	675	2	2.42	0.20	42 46 43 47	0.00	1.00	1.84	0.299	1.66	0.496	1.89	0.565	1.76	0.462	0.428	3.61	5
13/30 1	14/30	1/32A 1/33 1/34 1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/45 2/43 3/43 4/43 5/43 6/43 7/43 1/44 2/44 3/44 1/44A 2/44A 1/30 2/30 3A/30 4/30												10.28	231	4.565	0	872	40.912	2.276	675	2	2.44	0.34	33 34	0.00	1.00	1.11	0.303	0.24	0.073		0.073	2.06	0.897	0.411	3.82	5
14/30	7/1	1/31 1/32 1/32A 1/33 1/34 1/35 1/36 1/37 1/38 2/38 1/39 1/41 1/40 2/40 3/40 1/43 2/43 3/43 4/45 5/43 6/43 7/43 1/44 2/44 3/44 1/4A 2/4A 1/30 2/30 3A/30 4/30												10.62	228	4.726	0	923	12.606	0.550	750	2	2.09	0.11	33 34	0.00	1.00	1.07	0.223	0.23	0.051		0.051	0.63	0.075	0.750	2.09	-
1/31 1	14/30	1/31	6.00	275	1.00	0.063	0.063	48	1348	1.16	50	1298	1/32	6.00	275	0.063	0	50	5.871	1.000	375	2	0.45	0.05	32	1.00		1.27	0.010	9.70	0.101		0.101	0.21	0.041	0.137	1.37	5
	14/30		8.00		-		0.098	-	_	0.82		2457	1/29A	8.00		0.098	-	50	3.051	1.020	375	2	0.45	0.03		1.00			0.010	-				0.01	0.002	0.137	1.37	_
	13/30 12/30		8.00 8.00	252 252	-	-	0.309			2.01 3.63		1141 1179	1/32 1/31	8.00 8.00	-	0.309		43 41	3.051	1.048	375 375	2	0.39	0.03		1.00			0.008					0.00	0.002	0.127	1.31 1.30	+
	12/30		-	252	-	0.272	-	-	-	3.63	-	1179 968	1/31 1/32A	8.00	-	0.272	0	41	8.824 13.574	1.019	375	2	0.37	0.07		1.00			0.007	-				0.06	0.005		1.30	+

	FOR CONSTRUCTION

B ISSUED FOR CONSTRUCTION A ORIGINAL ISSUE REV DESCRIPTION

8/08/2023

DESIGNED KLYNT KIWANG	SCALE	CLIENT	MIRVAC QLD PTY LTD
ANDREW LANGDON		PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPM
PROJECT MANAGER NICK SOMERVILLE			
PROJECT DIRECTOR		LOCATION	TEVIOT ROAD, GREENBANK
PATRICK BRADY RPEO 7112		SHEET TITLE	STORMWATER CALCULATIONS 1% AEP STORM - SHE

STORM - SHEET 2

ON DEVELOPMENT

HEET NUMBER

C444

MIR-1001

REV

В

NORMAL DEPTH VELOCITY S SURFACE OR GRATE LEVEL DOWNSTREAM OBVERT LEVEL MAJOR SURFACE FLOW STRUCTURE NUMBER UPSTREAM OBVERT LEVEL DOWNSTREAM H.G.L. DEPTH × VELOCITY PRODUCT MAJOR SURFACE FLOW CAPACITY UPSTREAM H.G.L. W.S.E. m/s m m m m m m l/s l/s m²/s 3.37 67.213 66.315 67.191 66.411 67.936 69.048 1529 345 5/30 4.21 66.295 64.405 66.282 64.732 66.411 67.573 6/30 4.37 64.405 63.190 64.493 63.585 64.732 65.660 7/30 8/30 5.42 63.170 62.099 63.460 62.165 63.585 64.434 3.70 62.099 61.492 62.060 61.530 62.165 63.181 9/30 10/30 4.82 61.472 59.086 61.435 59.139 61.530 62.433 11/30 4.30 59.066 56.722 59.033 57.125 59.139 60.172 3.61 56.722 56.247 56.630 56.210 57.195 57.776 12/30 3.82 56.227 55.296 56.137 55.295 56.210 57.248 13/30 14/30 2.09 55.296 55.227 55.244 55.164 55.295 56.515
 1.37
 55.520
 55.462
 55.307
 55.295
 55.409
 56.461
 1787
 1348
 1/31
 1.37
 55.368
 55.337
 55.295
 55.397
 56.459
 2550
 2507
 1/32
 1.31
 56.295
 56.263
 56.210
 56.210
 56.286
 57.235
 1867
 1184
 0.37
 1/32A

 1.30
 56.949
 56.859
 57.130
 57.125
 57.193
 57.944
 1743
 1220
 0.41
 1/33
 .30 56.991 56.853 57.133 57.125 57.200 58.061 1775 1009 0.36 1/34

DESIGN LEVELS

RUNOFF

EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPMENT **TEVIOT ROAD, GREENBANK** FOR MIRVAC QLD PTY LTD **SEWERAGE**

LOCALITY PLAN

REAL PROPERTY DESCRIPTION LOT 205 & 434 on RP845844

on S312355

NAME OF ES	STATE	EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPMENT			
SUBDIVIDER		Mirvac QLD Pty Ltd			
APPLICATION No.		DEV2022/1277			
SP DELEGATE APPR	OVAL DATE	11/11/2022			
COUNCIL DA APPRO	VAL No.	-			
DRAWING/PLAN No.		C510 - C511			
No. OF ALLOTMENT	S	61			
AREA ha		3.93ha			
LENGTH OF SEWERS	DN150 uPVC SN8	1215.9m			

FOR CONSTRUCTION

ISSUED FOR CONSTRUCTIO

/08/2023

BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, OLD 4000 PH: (07) 3253 2222 Premise WEB: www.premise.com.au

DESIGNED KLYNT KIWANG		SCALE			CLIENT	MIRVAC QLD PTY LTD	JOB CODE	
CHECKED ANDREW LANGDON		0	200	400 600m	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPMENT	MIR-10	01
PROJECT MANAGER								
NICK SOMERVILLE			SCALE 1:1	.0000 (A1)	LOCATION	TEVIOT ROAD, GREENBANK	SHEET NUMBER	REV
PROJECT DIRECTOR	PFD		0 C/ IEE 11.		EUCATION	TEVIOT ROAD, GREENBANK		REV
	Inand						C500	I B
PATRICK BRADY	RPEO 7112		ORIGINAL SH	EET SIZE A1	SHEET TITLE	SEWERAGE LOCALITY PLAN & NOTES		_
			ONIGINAL SI	LET SIZE AT				

GENERAL NOTES

- 1. ALL WORK AND MATERIALS SHALL BE IN ACCORDANCE WITH CURRENT SOUTH EAST QUEENSLAND SEWERAGE CODE SPECIFICATIONS AND STANDARDS.
- UNLESS SPECIFIED OTHERWISE ALL MATERIALS AND WORK SHALL COMPLY WITH THE RELEVANT AUSTRALIAN STANDARDS.
- THE CONSTRUCTION OF THE SEWERAGE WORK SHOWN ON THIS DRAWING SHALL BE SUPERVISED BY AN ENGINEER WHO HAS RPEQ REGISTRATION. SEWERAGE WORKS NOT COMPLYING WITH THIS REQUIREMENT WILL NOT BE PERMITTED TO CONNECT INTO THE SEO SERVICE PROVIDER SEWERAGE SYSTEM.
- 4. ALL WORK ASSOCIATED WITH LIVE SEWERS OR MAINTENANCE HOLES SHALL BE CARRIED OUT BY THE CONTRACTOR UNDER LOGAN WATER SUPERVISION AT THE DEVELOPER'S COST
- ALL PIPES AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE "ACCEPTED PRODUCTS AND MATERIALS" LIST.
- EACH ALLOTMENT SHALL BE SERVED BY A DN100 PROPERTY CONNECTION. FOR ALLOTMENTS OTHER THAN SINGLE RESIDENTIAL, A DN150 PROPERTY CONNECTION SHALL BE PROVIDED.
- PROPERTY CONNECTIONS SHALL BE LOCATED WITHIN THE PROPERTY AS SHOWN IN THE DRAWINGS.
- SHOWN IN THE DRAWINGS. PROPERTY CONNECTION BRANCHES SHALL EXTEND INTO THE PROPERTY A MINIMUM OF 300mm AND A MAXIMUM OF 750mm.
- WHERE PIPES ARE LAID IN FILL, THE FILLING SHALL BE CARRIED OUT IN LAYERS NOT EXCEEDING 300mm (LOOSE) IN DEPTH AND SHALL BE COMPACTED UNTIL THE COMPACTION IS NOT LESS THAN 95% OF THE MATERIALS MAXIMUM COMPACTION WHEN TESTED IN ACCORDANCE WITH A.S. 1289 (MODIFIED COMPACTION). TESTING SHALL BE CARRIED OUT AFTER FACH ALTERNATE LAYER. IN ALL SUCH CASES APPROVAL OF CONSTRUCTED SEWERS WILL NOT BE ISSUED BY THE SEQ SERVICE PROVIDER UNLESS CERTIFICATES ARE PRODUCED CERTIFYING THAT THE REQUIRED
- COMPACTION HAS BEEN ACHIEVED. 10. WHERE SEWERS HAVE A GRADE OF 1 IN 20 OR STEEPER,BULKHEADS SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE SEQ SEWER CODE.
- 11 THE CONTRACTOR SHALL VERIEV THE LOCATION AND DEPTH OF EXISTING SERVICES WITH RELEVANT AUTHORITIES BEFORE COMMENCING WORKS.
- 12 SEWERS SHALL BE DISUSED / ABANDONED IN ACCORDANCE WITH PROCEDURES SET OUT IN THE SEQ SEWER CODE.
- 13. BENCH MARK AND LEVELS TO AHD.
- 14. REFER TO BULK EARTHWORKS DRAWINGS FOR FINISHED SURFACE LEVELS. 15. ALL SEWER CONSTRUCTION WORK UNDERTAKEN BY THE CONTRACTOR SHALL COMPLY WITH THE REQUIREMENTS OF THE QUEENSLAND WORK
- HEALTH AND SAFETY ACT. FOR INFORMATION PHONE: 1300 369 915. 16. THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL NECESSARY
- PERMITS TO ALLOW CONSTRUCTION OF THE SEWER SYSTEM. 17. THE CONTRACTOR IS RESPONSIBLE FOR EXCAVATION AND SAFE SHORING
- TO ALLOW SEWER MAINTENANCE SECTION TO CARRY OUT LIVE SEWER WORK.
- 18. CONSTRUCT TRENCHES TO SEQ-SEW-1200-2, WITH EMBEDMENT TYPE 3 SUPPORT MINIMUM TO SEQ-SEW-1201-1, AND ROAD CROSSINGS TO
- SEQ-SEW-1205-1 AND LCC STANDARDS. 19 CONSTRUCT PROPERTY CONNECTIONS TO SEO-SEW-1100 SERIES
- 20. CONSTRUCT MAINTENANCE STRUCTURES TO SEQ-SEW-1300 SERIES.
- 21 CONSTRUCT BUI KHEADS TO SEO-SEW-1206-1
- 22. INSTALL DETECTABLE MARKER TAPE ON ALL MAINS AND PROPERTY CONNECTIONS
- 23. CALCAREOUS CONCRETE IN MAINTENANCE HOLES REQUIRED IN
- ACCORDANCE WITH SEQ WS&S D&C CODE REQUIREMENTS. 24. CCTV OF SEWER TO BE UNDERTAKEN AND SUPPLIED TO SUPERINTENDENT PRIOR TO, BUT NO GREATER THAN 2 WEEKS BEFORE, THE ON-SITE INSPECTION FOR OFF MAINTENANCE.

VEGETATION PROTECTION

A. TREES LOCATED ALONG THE FOOTPATH SHALL BE, TRANSPLANTED PRIOR TO CONSTRUCTION, OR REPLACED IF DESTROYED. B. WHEN WORKING WITHIN 4m OF TREES, RUBBER OR HARDWOOD GIRDLES S HALL BE CONSTRUCTED WITH 1.8m BATTENS CLOSELY SPACED AND ARRANGED VERTICALLY FROM GROUND LEVEL. GIRDLES SHALL BE STRAPPED TO TREES PRIOR TO CONSTRUCTION AND REMAIN UNTIL COMPLETION. C. TREE ROOTS SHALL BE TUNNELLED UNDER, RATHER THAN SEVERED. IF ROOTS ARE SEVERED THE DAMAGED AREA SHALL BE TREATED WITH A SUITABLE FUNGICIDE. CONTACT RELEVANT COUNCIL ARBORIST FOR FURTHER ADVICE. D. ANY TREE LOPPING REQUIRED SHOULD BE UNDERTAKEN BY AN APPROVED ARBORIST

SOIL

A. TOPSOIL AND SUBSOIL SHALL BE STOCKPILED SEPARATELY. B. CARE SHALL BE TAKEN TO PREVENT SEDIMENT FROM ENTERING THE STORMWATER SYSTEM. THIS MAY INVOLVE PLACING APPROPRIATE SEDIMENT CONTROLS AROUND STOCKPILES. C. IF ACID SULPHATE SOILS EXIST IN THE WORKS AREA, ACID SULPHATE SOILS ARE TO MANAGED IN ACCORDANCE WITH AN APPROVED ACID SULPHATE SOIL MANAGEMENT PLAN.

CREEK CROSSINGS

A. SILTATION CONTROL MEASURES SHALL BE PLACED DOWNSTREAM OF ANY EXCAVATION WORK. B. APPROPRIATE SEDIMENT CONTROLS SHALL BE USED TO PREVENT SEDIMENT FROM ENTERING THE CREEK. C. NO SOIL SHALL BE STOCKPILED WITHIN 5m OF THE CREEK.

REHABILITATION

A. PREDISTURBANCE SOIL PROFILES AND COMPACTION LEVELS SHALL BE REINSTATED.

B. PREDISTURBANCE VEGETATION PATTERNS SHALL BE RESTORED

SAFETY

A. THE DESIGN AND CONSTRUCTION OF THE WORKS SHALL COMPLY WITH ALL OUEENSLAND LEGISLATION

SH	EET LIST TABLE
SHEET NO.	SHEET TITLE
C500	SEWERAGE LOCALITY PLAN & NOTES
C510	SEWERAGE LAYOUT PLAN - SHEET 1
C511	SEWERAGE LAYOUT PLAN - SHEET 2
C520	SEWERAGE LONG SECTIONS - SHEET 1
C521	SEWERAGE LONG SECTIONS - SHEET 2
C522	SEWERAGE LONG SECTIONS - SHEET 3
C523	SEWERAGE LONG SECTIONS - SHEET 4
C530	SEWERAGE NOTES AND DETAILS

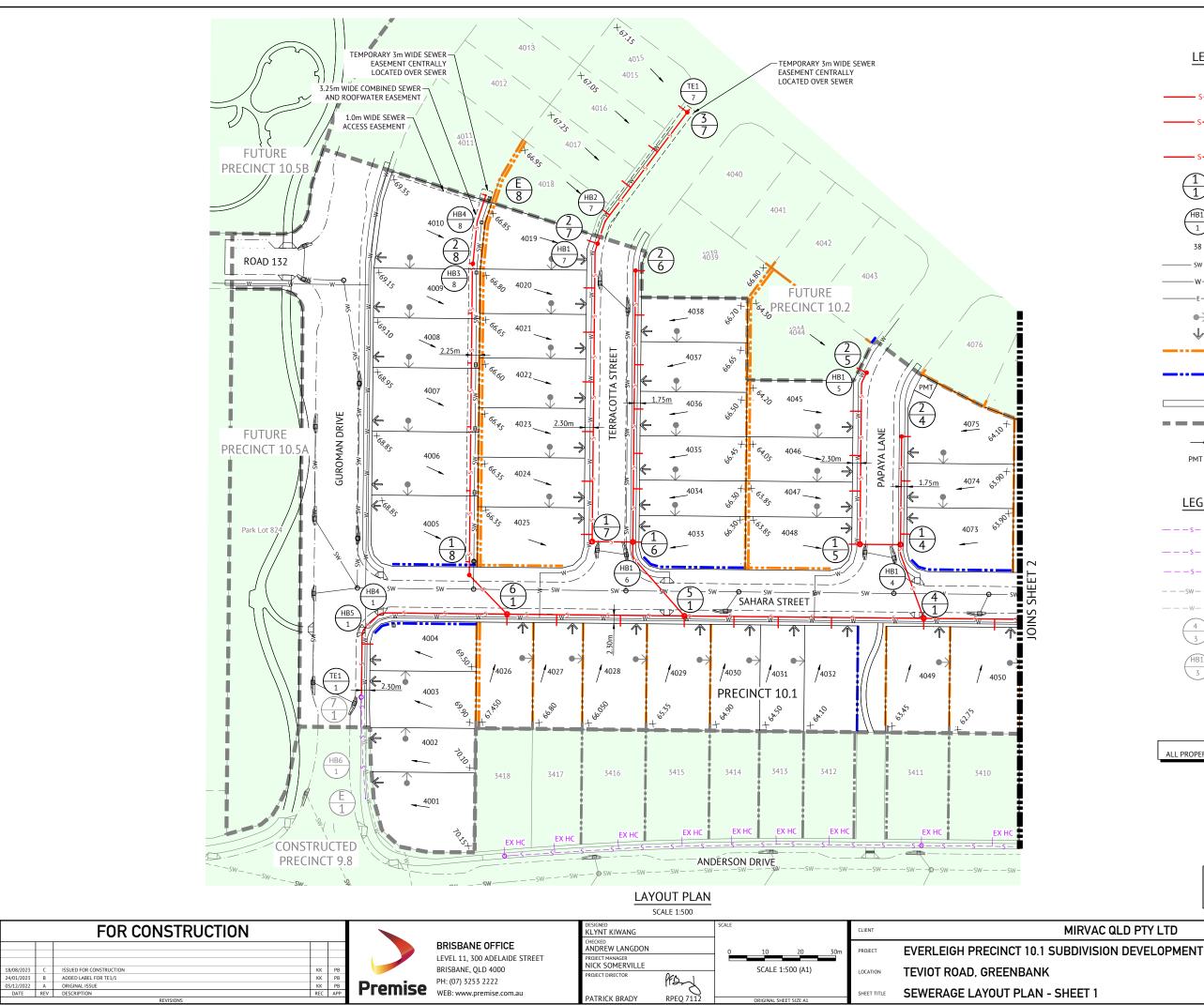
INDEMNITY - EXISTING SERVICES

NOT WITHSTANDING THAT EXISTING SERVICES MAY OR MAY NOT BE SHOWN ON THESE DRAWINGS, NO RESPONSIBILITY IS TAKEN BY THE ENGINEER OR THE PRINCIPAL FOR THIS INFORMATION WHICH HAS BEEN SUPPLIED BY OTHERS. THI DETAILS ARE PROVIDED FOR INFORMATION ONLY. THE CONTRACTOR SHALL ASCERTAIN THE POSITION OF ALL UNDERGROUND SERVICES PRIOR TO EXCAVATION AND SHALL BE RESPONSIBLE FOR THE COST OF REPAIRS TO DAMAGES CAUSED AS A RESULT OF THE WORKS.

ALL ENVIRONMENT PROTECTION MEASURES SHALL BE IMPLEMENTED PRIOR TO COMMENCING ANY CONSTRUCTION WORK INCLUDING CLEARING

ALL SEWER CONSTRUCTION WORK LINDERTAKEN BY THE CONTRACTOR SHALL COMPLY WITH THE REQUIREMENTS O THE OUFENSI AND WORKPLACE HEALTH AND SAFETY ACT 2011. CONTACT THE DIVISION OF HEALTH & SAFETY FOR INFORMATION PHONE: 1300 369 915

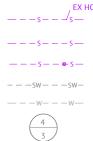
CONTACT "DIAL BEFORE YOU DIG" ON 1100 FOR LOCATION OF EXISTING PUBLIC SERVICES PRIOR TO EXCAVATION


TRENCH SPOIL NOTE:

SPOILAGE OF EXCESS MATERIAL TO BE PLACED INTO THE SOUTHERN DAM REHABILITATION AREA INCLUDING ALL LEVEL ONE COMPACTION REQUIREMENTS AND TESTING IN ACCORDANCE WITH MORRISON GEOTECHNICAL SPECIFICATION AND ALL LOCAL AUTHORITY STANDARDS, AND SHALL BE FREE DRAINING

EXCAVATION IN ROCK NOTE:

CONTRACT SHALL INCLUDE TREATING, SIZING CONDITIONING AND PROCESSING ALL TYPES OF ROCK IN ALL EXCAVATIONS. PROCESSING TO BE COMPLETED AS PER MORRISON GEOTECHNICAL REPORTS TO ENSURE LEVEL 1 IS ACHIEVED



LEGEND - PROPOSED

S	GRAVITY SEWER
s	Ø100mm PROPERTY CONNECTION. 7.5m OFFSET FROM SIDE BDY WITH DWAY. 1.2m OFFSET FROM SIDE BDY WITHOUT DWAY. TYPICAL U.N.O.
S	MAINTENANCE STRUCTURE
$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	PROPOSED MAINTENANCE HOLE OR MAINTENANCE SHAFT NUMBER. REFER LONG SECTION DRAWINGS FOR STRUCTURE DETAILS.
HB1 1	HORIZONTAL BEND (3m RADIUS).
38	LOT NUMBER
SW	STORMWATER DRAINAGE
W	DRINKING WATER MAIN
E	ELECTRICAL (PROPOSED)
$\bullet \!$	ZERO LOT LINE
\checkmark	FUTURE DRIVEWAY LOCATION
	PROPOSED CONCRETE SLEEPER RETAINING WALL
	PROPOSED CONCRETE PANEL RETAINING WALL
	PROPOSED CONCRETE FOOTPATH & KERB RAMP
	STAGE BOUNDARY
	FALL ARROW
PMT	PADMOUNT TRANSFORMER

LEGEND - CONSTRUCTED

HB1

3

Ø100mm CONSTRUCTED PROPERTY CONNECTION

GRAVITY SEWER

MAINTENANCE STRUCTURE

STORMWATER DRAINAGE

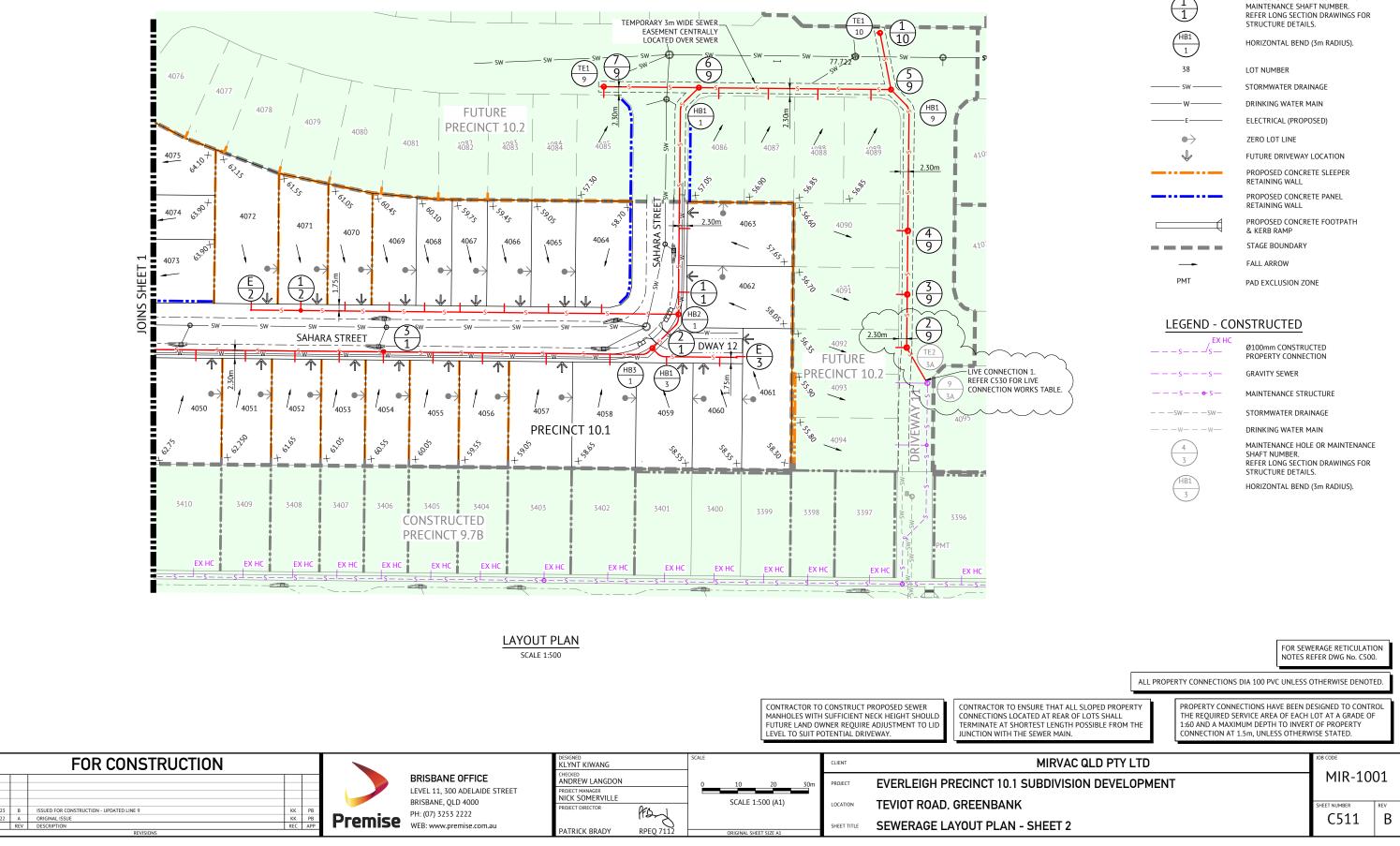
DRINKING WATER MAIN

MAINTENANCE HOLE OR MAINTENANCE SHAFT NUMBER. REFER LONG SECTION DRAWINGS FOR STRUCTURE DETAILS. HORIZONTAL BEND (3m RADIUS).

> FOR SEWERAGE RETICULATION NOTES REFER DWG No. C500.

ALL PROPERTY CONNECTIONS DIA 100 PVC UNLESS OTHERWISE DENOTED

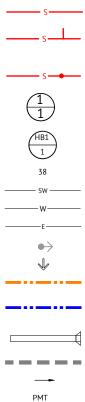
CONTRACTOR TO CONSTRUCT PROPOSED SEWER MANHOLES WITH SUFFICIENT NECK HEIGHT SHOULD FUTURE LAND OWNER REQUIRE ADJUSTMENT TO LID LEVEL TO SUIT POTENTIAL DRIVEWAY.


CONTRACTOR TO ENSURE THAT ALL SLOPED PROPERTY CONNECTIONS LOCATED AT REAR OF LOTS SHALL TERMINATE AT SHORTEST LENGTH POSSIBLE FROM THI JUNCTION WITH THE SEWER MAIN.

PROPERTY CONNECTIONS HAVE BEEN DESIGNED TO CONTROL THE REQUIRED SERVICE AREA OF EACH LOT AT A GRADE OF 1:60 AND A MAXIMUM DEPTH TO INVERT OF PROPERTY CONNECTION AT 1.5m, UNLESS OTHERWISE STATED.

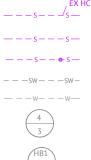
MIRVAC QLD PTY LTD

MIR-1001 EET NUMBEI C510


С

8/08/2023

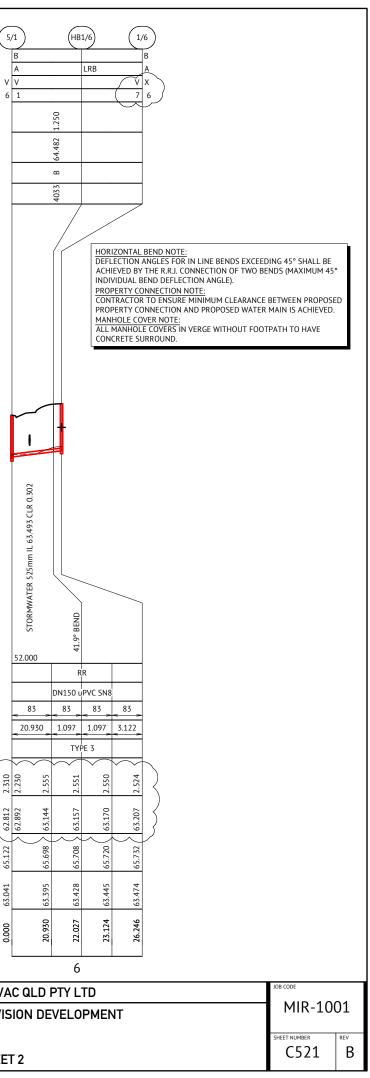
LEGEND - PROPOSED

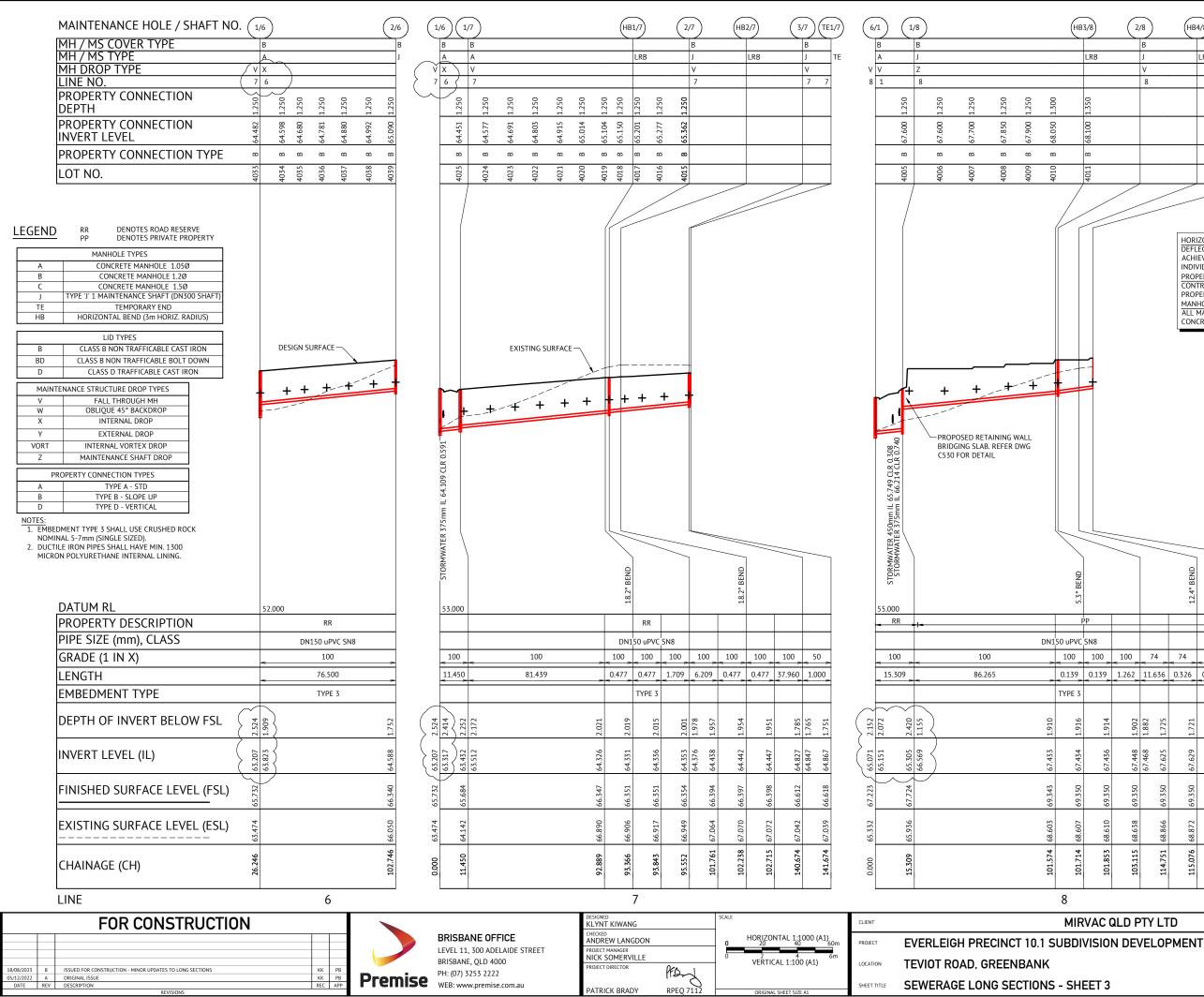


GRAVITY SEWER

Ø100mm PROPERTY CONNECTION. 7.5m OFFSET FROM SIDE BDY WITH DWAY. 1.2m OFFSET FROM SIDE BDY WITHOUT DWAY. TYPICAL U.N.O.

MAINTENANCE STRUCTURE


PROPOSED MAINTENANCE HOLE OR MAINTENANCE SHAFT NUMBER.

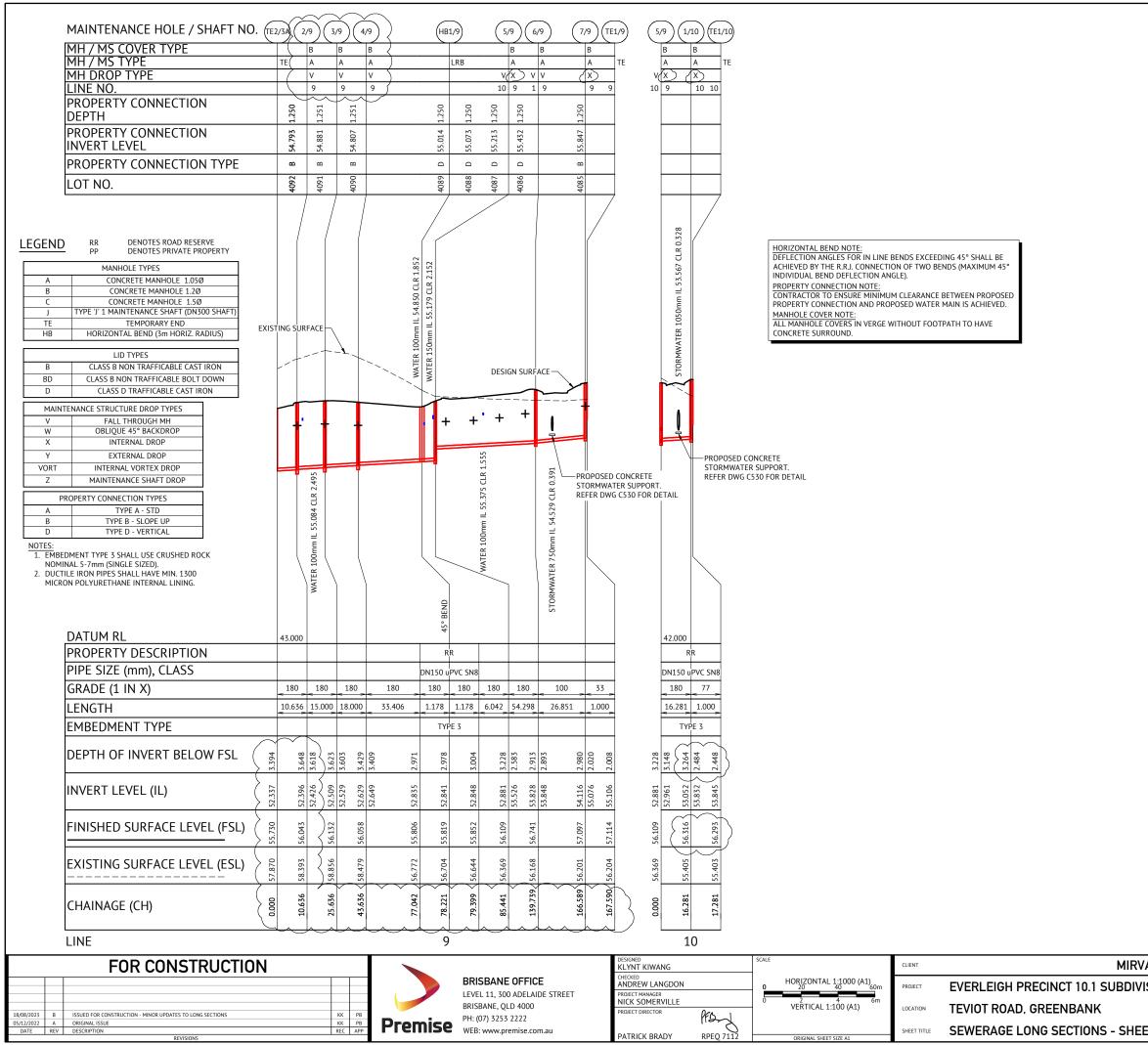


MAINTENANCE HOLE / SHAFT NO.6/9MH / MS COVER TYPEBMH / MS TYPEAMH DROP TYPEVLINE NO.1PROPERTY CONNECTIONDEPTHPROPERTY CONNECTIONINVERT LEVELPROPERTY CONNECTION TYPELOT NO.		D 56.021 1.250	4062 D 56.387 1.250 A 4062 D 56.387 1.250 A 4062 D 50.387 1.250 A	TP		4056 B 58.015 1.250 A A A A A A A A A A A A A A A A A A A		4053 B 59.601 1.250 8 79.601 4053 4052 8 60.135 1.250 8 60.135 1.2	4051 B 60.734 1.250 d1 4050 B 61.242 1.250 r d2	4049 B 61.811 1.1250 A 4 4 1 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		B 64.580 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B TP LRB	TP TP		TE1/1 TE	
LEGEND RR DENOTES ROAD RESERVE PP DENOTES PRIVATE PROPERTY MANHOLE TYPES A CONCRETE MANHOLE 1.05Ø B CONCRETE MANHOLE 1.20 C C CONCRETE MANHOLE 1.5Ø J TYPE 'J' 1 MAINTENANCE SHAFT (DN300 SHAFT) TE TEMPORARY END HB HORIZONTAL BEND (3m HORIZ. RADIUS) LID TYPES B B CLASS B NON TRAFFICABLE CAST IRON BD CLASS B NON TRAFFICABLE CAST IRON MAINTENANCE STRUCTURE DROP TYPES V FALL THROUGH MH W OBLIQUE 45° BACKDROP X INTERNAL DROP Y EXTERNAL DROP Y EXTERNAL DROP Y EXTERNAL OROP X INTERNAL VORTEX DROP Z MAINTENANCE SHAFT DROP D TYPE A - STD B TYPE A - STD <td></td> <td>+</td> <td>+</td> <td>EXIS</td> <td>TING SURFA</td> <td>CE +</td> <td>+</td> <td>HESIGN SURI</td> <td>+±</td> <td></td> <td>TER 100mm IL 63.208 CLR 1.381 + + + + + + + + + + + + + + + + + + +</td> <td>+</td> <td>WATER 100mm IL 66.084 CLR 1.248</td> <td>WATER 200mm IL 68.087 CLR 1.246</td> <td></td> <td></td> <td>HORIZONTAL BEND NOTE: DEFLECTION ANGLES FOR IN LINE BENDS EXCEEDING 45° SHALL BE ACHIEVED BY THE R.R.J. CONNECTION OF TWO BENDS (MAXIMUM 45° INDIVIDUAL BEND DEFLECTION ANGLE). PROPERTY CONNECTION NOTE: CONTRACTOR TO ENSURE MINIMUM CLEARANCE BETWEEN PROPOSE PROPERTY CONNECTION AND PROPOSED WATER MAIN IS ACHIEVED. MANHOLE COVER NOTE: ALL MANHOLE COVERS IN VERGE WITHOUT FOOTPATH TO HAVE CONCRETE SURROUND.</td> <td></td>		+	+	EXIS	TING SURFA	CE +	+	HESIGN SURI	+±		TER 100mm IL 63.208 CLR 1.381 + + + + + + + + + + + + + + + + + + +	+	WATER 100mm IL 66.084 CLR 1.248	WATER 200mm IL 68.087 CLR 1.246			HORIZONTAL BEND NOTE: DEFLECTION ANGLES FOR IN LINE BENDS EXCEEDING 45° SHALL BE ACHIEVED BY THE R.R.J. CONNECTION OF TWO BENDS (MAXIMUM 45° INDIVIDUAL BEND DEFLECTION ANGLE). PROPERTY CONNECTION NOTE: CONTRACTOR TO ENSURE MINIMUM CLEARANCE BETWEEN PROPOSE PROPERTY CONNECTION AND PROPOSED WATER MAIN IS ACHIEVED. MANHOLE COVER NOTE: ALL MANHOLE COVERS IN VERGE WITHOUT FOOTPATH TO HAVE CONCRETE SURROUND.	
DATUM RL 46.0	000	45 DEIY			45 ⁻ BEN			44./~ 81		53.000	<i>\$</i>			45° BEN		45° BEN		
PROPERTY DESCRIPTION											RR							
PIPE SIZE (mm), CLASS										DN15	50 uPVC SN8							
GRADE (1 IN X)	58 58	58	- 58	67 67	67	67	32 32	32	< 32 31 <	~	32	23	~	26 26 26	26	26 26 26	-	
LENGTH6	5.042 1.178	1.178	57.656 1	.1661.178	1.178	8.997 1	.326 1.170	1.170	72.907 73.00	0	67.500	50.00	00	34.406	4.800	1.178 1.178 16.4	16	
EMBEDMENT TYPE											TYPE 3						7	
DEPTH OF INVERT BELOW FSL	2.648	2.577	2.730 2.106	2.125 2.125	2.127	2.116 2.033	2.042	2.009	2.007 1.987	2.356 2.336	2 310 2 10	2.230	2.152	2.112 2.464 2.469 2.469	2.487 2.496	2.468 2.453	1.951	
INVERT LEVEL (IL)	54.011	100. 7 6 54.051	55.041 55.665	55.683 EE 701	55.718	55.853 55.936	55.977	56.01 <i>5</i> 56.049	58.309 58.329	60.705 60.725	62 812	62.892	65.071 65.111	65.111 66.419 66.464	66.508 66.691	66.736 66.780	67.404	
FINISHED SURFACE LEVEL (FSL)	56.659	56.629	57.771	57.808	57.845	57.969	58.019	58.058	60.317	63.061	65 172		67.223	68.883 68.932	68.996 69.187	69.203	69.354	
EXISTING SURFACE LEVEL (ESL)	56.387	56.502	59.237	59.247	59.271	59.363	59.380	59.419 59.419	-	61.314	140 53 041		65.332	67.349 67.349	67.404 67.621	67.689	67.872	
CHAINAGE (CH)	6.042	8.398	66.055	67.221	69.577	78.574	79.900	81.071	155.148	228.148			345.648	380.053 381.232	382.410 387.209	388.387 389.565	405.972	
LINE										1	1							
			-					Ĩ	DESIGNED		SCALE		CLIENT				QLD PTY LTD	JOB CODE
FOR CONSTRUCTION					BRISBAN	אב טבביי	CF	ŀ	KLYNT KIWANG			AL 1.1000 (A1)						MIR-1001
			4					ŀ	ANDREW LANGDO			AL 1:1000 (A1)	Om PROJECT	EVERLEIGH PF	RECINCT 1	0.1 SUBDIVISI	ON DEVELOPMENT	
18/08/2023 C ISSUED FOR CONSTRUCTION - MINOR UPDATES TO LONG SECTIONS 24/01/2023 B AMENDED HB2/1 BEND AND UPDATED PIPE GRADE BETWEEN (4) AND 1/1	K	C PB			BRISBANE,		1	ŀ	NICK SOMERVILLE PROJECT DIRECTOR	= DCA	VERTICA	L 1:100 (A1)	LOCATIO	■ TEVIOT ROAD,	GREENBA	NK		SHEET NUMBER REV
05/12/2022 A ORIGINAL ISSUE DATE REV DESCRIPTION		C APP	Prer	nise	PH: (07) 32 WEB: www		om.au			PFD-	8		SHEET TI	SEWERAGE LO	NG SECT	IONS - SHFFT	1	C520 C
REVISIONS									PATRICK BRADY	RPEQ 7	/112 ORIGINAL S	HEET SIZE A1						

MAINTENANCE HOLE / SHAFT NO. (1/2) MH / MS COVER TYPE MH / MS TYPE MH DROP TYPE LINE NO. 2 PROPERTY CONNECTION DEPTH PROPERTY CONNECTION INVERT LEVEL PROPERTY CONNECTION TYPE LOT NO.	B 56.991 1.250 1 B 57.450 1.250 1 X B 57.450 1.250 1 X B 57.450 1.250 1 X B 58.219 1.250 1 X B 58.233 1.250 X X B 59.536 1.250 X X B 59.001 1.250 X X B 59.001 1.250 X X	E/2 2/1 HB1/3 B A072 B 60.668 1.250 A059 B 56.803 1.250 1 A060 B 56.803 1.250 1 A060 B 56.803 1.250 1 A060 B 56.803 1.250 1	B 62.024 B 62.258	4075 B 62.454 1.250 4075 B 62.454 1.250 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7 /	B 62.174 1 B 62.330 1 B 62.503 1 B 62.519 1 B 62.519 1
BD CLASS B NON TRAFFICABLE BOLT DOWN D CLASS D TRAFFICABLE CAST IRON MAINTENANCE STRUCTURE DROP TYPES V V FALL THROUGH MH W OBLIQUE 45° BACKDROP X INTERNAL DROP Y EXTERNAL DROP	DESIGN SURFACE		PROPOSED CC STORMWATER		++++
VORT INTERNAL VORTEX DROP Z MAINTENANCE SHAFT DROP PROPERTY CONNECTION TYPES A A TYPE A - STD B TYPE D - VERTICAL NOTES: 1. I. EMBEDMENT TYPE 3 SHALL USE CRUSHED ROCK NOMINAL 5-7mm (SINGLE SIZED). 2. DUCTILE IRON PIPES SHALL HAVE MIN. 1300 MICRON POLYURETHANE INTERNAL LINING. DATUM RL PROPERTY DESCRIPTION PIPE SIZE (mm), CLASS	PROPOSED CONCRETE STORMWATER SUPPORT. REFER DWG C530 FOR DETAIL	45.000 RR DN150 uPVC SN8	APPENDIC CLAR O REFER DWG CLAR O REFER DWG CLAR O REFER 000mm IF 61.372 CLAR O REFUSION CLAR O REFUSION CLAR OF CLAR O	49.0	00 RR DN150 uPVC SN8 DN150 uPVC SN8
GRADE (1 IN X)	DN150 uPVC SN8		100 77 77 77		
LENGTH	106.700 14.0	<u> </u>	< >	2.083 30.478	
EMBEDMENT TYPE	TYPE 3	TYPE 3	TYPE	3	
	2.650	2.150 2.036 2.079 2.085 2.079 2.079	2.002	2.036	1.934 1.914 1.914 1.914 2.096 2.091 2.031 2.031 2.330
INVERT LEVEL (IL) 150 250	55.121 59.069 59.089	59.768 55.933 55.933 55.954 55.966 55.966 55.977	56.180 60.705 60.785 61.030 61.036	61.071 (61.151 (61.699 (61.071 (61.071 (61.071) (61.151)	61.265 (61.265 (61.285 (61.285 (61.285 (61.285 (61.733)61.733)61.740 (61.740 (61.742)61.772)61.772 (62.892)62.892 (62.892)62.892)62.892)61.772 (62.892
FINISHED SURFACE LEVEL (FSL)	61.320	61.918 57.969 58.033 58.051 58.056	58.182 63.061 63.218 63.220	63.237 63.704 63.704 63.237	63.199 63.829 63.821 63.828 63.828 63.803 63.803 63.803
EXISTING SURFACE LEVEL (ESL)	59.987 6	60.077 (6 59.363 <u>5</u> 59.357 <u>5</u> 59.310 <u>5</u> 59.275 <u>5</u>	904 314 453 439	344	60.641 (60.494 (60.494 (60.494 (60.514 (60.514 (60.514 (60.514 (60.514 (60.514 (60.511
CHAINAGE (CH)	106.700 59	120.700 60 0.0000 59 2.055 59 3.241 59 4.427 59			11.450 60 56.234 60 56.911 60 57.587 60 60.126 60 60.126 60
LINE	2	3	4		5
FOR CONSTRUCTION		CHECKED CHECKED	KIWANG SCALE HORI	CLIENT	
18/08/2023 8 ISSUED FOR CONSTRUCTION - MINOR UPDATES TO LONG SECTIONS 05/12/2022 A ORIGINAL ISSUE DATE REV DESCRIPTION REVISIONS	кк Рв Кк Рв Кк Рв	1, 300 ADELAIDE STREET PROJECT NICK S IE, QLD 4000 PROJECT C 3253 2222 PROJECT C	OMERVILLE 0 2 VEF	ZONTAL 1:1000 (A1) ATTICAL 1:100 (A1) Ginal sheet size A1	EVERLEIGH PRECINCT 10.1 SUBDIVISION TEVIOT ROAD, GREENBANK SEWERAGE LONG SECTIONS - SHEET 2

Т	3
•	-

MIRVAC QLD PTY LTD MIR-1001 C522


				12.4° BEND		
18						
100 -	100	_ 7	′4 >	- ⁷⁴ -	- 74	_ 74 _
.139	1.262	11.	636	0.326	0.326	7.431
1.914	1.902	1.882	1.725	1.721	1.716	1.716
67.436	67.448	67.468	67.625	67.629	67.634	67.734
69.350	69.350		69.350	69.350	69.350	69.450
68.610	68.638		68.866	68.872	68.877	68.952
101.853 68.610	103.115 68.638		114.751 68.866	115.076 68.872	115.402 68.877	122.833 68.952

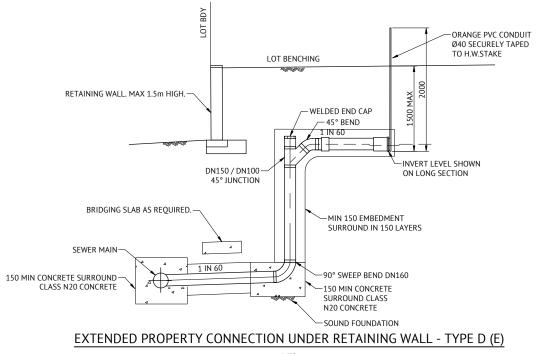
\				12.4° BEND		
			_			-
3	100		_	- 1		
00 >	< 100 ×	< 74 <	>	- 74 -	< ⁷⁴ >	< ⁷⁴ >
139	1.262	11.63	6	0.326	0.326	7.431
1.914	1.902	1.882	1./ 25	1.721	1.716	1.716
67.436	67.448	67.468	679.19	67.629	67.634	67.734
69.350	69.350	014	055.60	69.350	69.350	69.450 67.734 1.716
68.610	68.638		08.800	68.872	68.877	68.952
20	10		_	<u>_</u>	5	~

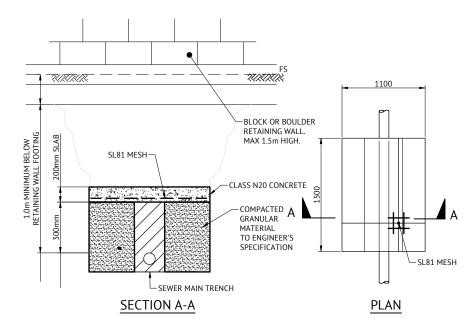
_	
ſ	HORIZONTAL BEND NOTE:
	DEFLECTION ANGLES FOR IN LINE BENDS EXCEEDING 45° SHALL BE
	ACHIEVED BY THE R.R.J. CONNECTION OF TWO BENDS (MAXIMUM 45°
	INDIVIDUAL BEND DEFLECTION ANGLE).
	PROPERTY CONNECTION NOTE:
	CONTRACTOR TO ENSURE MINIMUM CLEARANCE BETWEEN PROPOSED
	PROPERTY CONNECTION AND PROPOSED WATER MAIN IS ACHIEVED.
	MANHOLE COVER NOTE:
	ALL MANHOLE COVERS IN VERGE WITHOUT FOOTPATH TO HAVE
	CONCRETE SURROUND.

)	2/8	(HB4/8)	E/8
	В		
В	J	LRB	EN
	V		
	8		

В

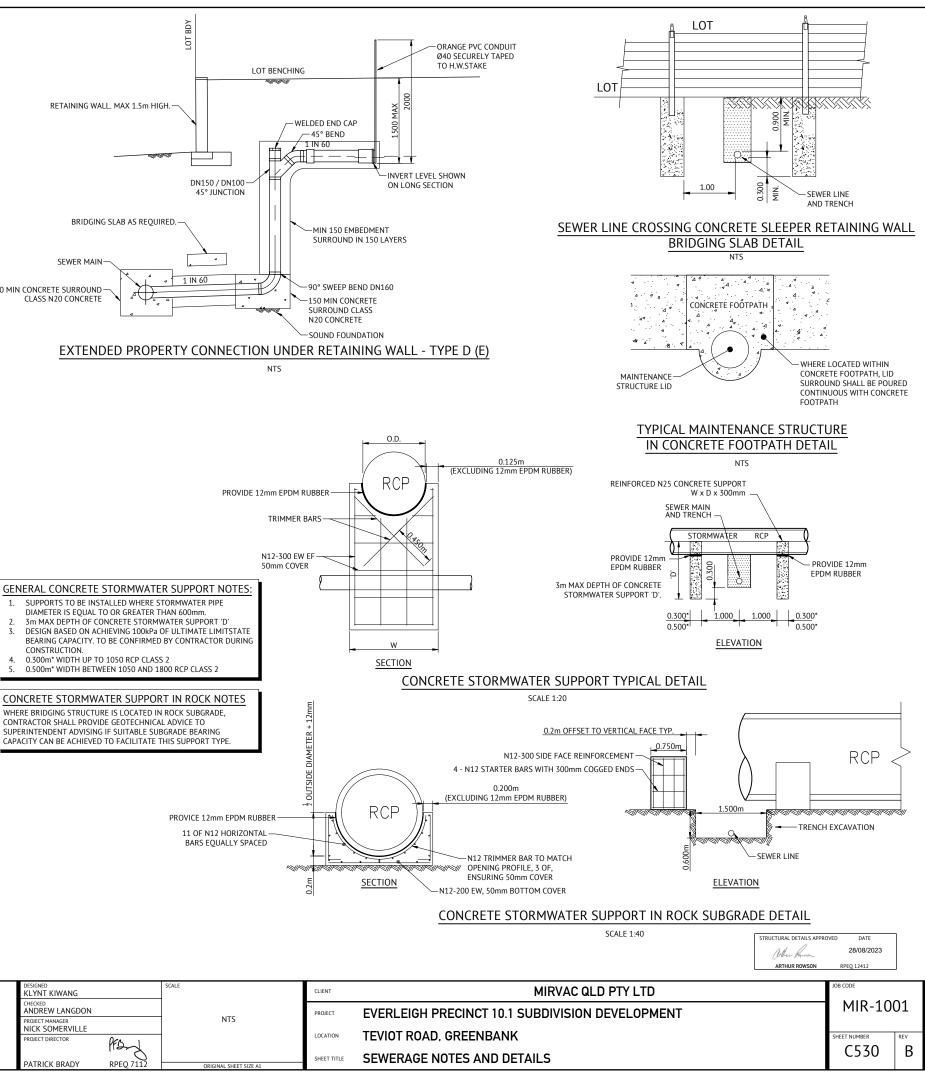
AC QLD PTY LTD	JOB CODE	
ISION DEVELOPMENT	MIR-1001	
	SHEET NUMBER	REV
ET 4	C523	В

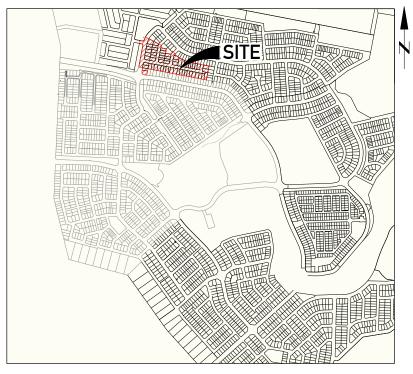

LIVE SEWER WORKS DIA. MH NO. MH COVER LOT SEWER TYPE TYPE NO. I.L. DEPTH F.S.L. E.S.L. No. DESCRIPTION 0.5m FROM STUB END CAP TE2/3A, CONSTRUCTOR TO LAY NEW LINE 3A. AFTER CLEANSING, TESTING AND INSPECTING, NOTIFY 1(A) 150 TE2/3A END 4093 55.730 57.870 52.337 3.394 AGENCY. AGENCY TO REMOVE TEMPORARY END CAP ON STUB AND LINE 3A AND MAKE LIVE CONNECTIONS AFTER SUCCESSFUL 1(B) "ON MAINTENANCE" INSPECTION.


 $\overline{}$ LEVELS IN THE LIVE SEWER TABLE ARE DESIGN LEVELS.

AS CONSTRUCTED INFORMATION TO BE ADDED WHEN AVAILABLE.

CONSULTING ENGINEERS ARE TO CONTACT PRIOR TO COMMENCEMENT OF CONSTRUCTION TO ARRANGE FOR THIS WORK TO BE CARRIED OUT. (EXCAVATION, SAFE-SHORTING AND ASSOCIATED WORK BY CONTRACTOR).


EXCAVATION WORKS CARRIED OUT BY CONTRACTORS AT DEPTH OF 1.5m OR GREATER MUST PROVIDE A "SAFE WORK PLAN" AS PER WORKPLACE HEALTH AND SAFETY LEGISLATION TO SEO-SPS PRIOR TO COMMENCING ANY WORK. IT IS THE DEVELOPER'S RESPONSIBILITY TO ENSURE ALL LIVE SEWER WORKS ARE COMPLETE BEFORE ALLOWING PRIVATE DRAINAGE TO BE CONNECTED.


SERVICE LINE CROSSING BOULDER OR BLOCK RETAINING WALL **BRIDGING SLAB DETAIL**

NTS

		FOR CONSTRUCTION			DESIGNED KLYNT KIWANG		SCALE	CLIENT	MIRVAC
				BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	CHECKED ANDREW LANGDON PROJECT MANAGER		NTS	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISIO
18/08/202	3 B	ISSUED FOR CONSTRUCTION KK PE		BRISBANE, QLD 4000 PH: (07) 3253 2222	NICK SOMERVILLE PROJECT DIRECTOR	PFD		LOCATION	TEVIOT ROAD, GREENBANK
05/12/202 DATE	2 A REV	ORIGINAL ISSUE KK PE / DESCRIPTION REC AP	Premise	WEB: www.premise.com.au	PATRICK BRADY	RPEQ 7112	ORIGINAL SHEET SIZE A1	SHEET TITLE	SEWERAGE NOTES AND DETAILS

EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPMENT **TEVIOT ROAD, GREENBANK** FOR MIRVAC QLD PTY LTD WATER RETICULATION

SHEET LIST TABLE

SHEET TITLE WATER RETICULATION LOCALITY PLAN & NOTES

WATER RETICULATION LAYOUT PLAN - SHEET 1

WATER RETICULATION LAYOUT PLAN - SHEET 2

WATER LIVE CONNECTION AND TYPICAL DETAILS

LOCALITY PLAN **REAL PROPERTY DESCRIPTION**

SHEET NO.

C600

C610

C611

C620

LOT 205 & 434	on RP845
LOT 9	on S3123

GENERAL NOTES

- ALL WORK AND MATERIALS SHALL BE IN ACCORDANCE WITH CURRENT SOUTH EAST OUEENSLAND WATER SUPPLY CODE SPECIFICATIONS AND STANDARDS.
- LINEESS SPECIFIED OTHERWISE ALL MATERIALS AND WORK SHALL COMPLY WITH THE RELEVANT AUSTRALIAN STANDARDS.
- ADOPT LIP OF KERB OR SHOULDER OF ROAD AS PERMANENT LEVEL COVER OF MAIN FROM PERMANENT LEVEL TO BE AS SHOWN IN
- SEO-WAT-1200-2 CONDUITS TO BE INSTALLED IN ACCORDANCE WITH THE STANDARD
- DRAWINGS ALL MATERIALS USED IN THE WORKS SHALL COMPLY WITH SEQ-SP's
- ACCEPTED PRODUCTS AND MATERIALS LIST OR BE APPROPRIATELY SHOWN, LISTED AND DEFINED IN THE ENGINEERING SUBMISSION SO THAT THE ALTERNATIVE PRODUCT OR MATERIAL CAN BE ASSESSED AND IF APPROPRIATE, APPROVED BY SEO-SP's
- ALL CONCRETE FOOTPATHS TO BE CLEAR OF WATER MAINS. WHERE POSSIBLE
- CONSTRUCTION OF THE WATER RETICULATION WORK SHOWN ON THIS DRAWING MUST BE SUPERVISED BY AN ENGINEER WHO HAS RPEQ REGISTRATION. WORKS NOT COMPLYING WITH THIS REQUIREMENT WILL NOT BE PERMITTED TO CONNECT TO THE RETICULATION SYSTEM.
- ALL WATER CONSTRUCTION WORK UNDERTAKEN BY THE CONTRACTOR SHALL COMPLY WITH THE REQUIREMENTS OF THE OLIFENSI AND WORK HEALTH AND SAFETY ACT 2011 CONTACT THE DIVISION OF WORKPLACE HEALTH & SAFETY FOR INFORMATION. PHONE: 1300 362 128.
- 10. CONSTRUCT THRUST BLOCKS ON ALL BENDS, TEES, TAPERS AND DEAD ENDS IN ACCORDANCE WITH SEQ-WAT-1205-1, AND SEQ-WAT-1206-1. 11. CONSTRUCT TRENCHES IN ACCORDANCE WITH SEQ-WAT-1200-2, PIPE
- EMBEDMENT TO SEQ-WAT-1201-1 (TYPE C SUPPORT) AND ROAD CROSSINGS TO SEQ-WAT-1204-1 AND LCC STANDARDS.
- INSTALL SCOURS IN ACCORDANCE WITH SEO-WAT-1307-3 13. INSTALL DETECTABLE MARKER TAPE ON ALL WATER MAINS AND
- PROPERTY SERVICES 14. INSTALL HYDRANTS IN ACCORDANCE WITH SEQ-WAT-1302-1,
- SEQ-WAT-1303-1 15. INSTALL PAVEMENT MARKERS IN ACCORDANCE WITH SEQ-WAT-1300-1 CREEK CROSSINGS
- 16. WATER SERVICE CONNECTIONS INCLUSIVE OF WATER METER BOXES
- ARE TO BE INSTALLED IN ACCORDANCE WITH STANDARD DRAWINGS SEO-WAT-1110-1 & SEO-WAT-1110-2 AND OTHER RELEVANT STANDARD DRAWINGS FROM SEQ DESIGN AND CONSTRUCTION CODE. 17 TFRMINATE ALL WATER SERVICES AFTER INSTALLATION OF THE BALL
- VALVE (PRIOR TO THE WATER METER). THE APPLICANT IS NOT REQUIRED TO MAKE AN APPLICATION TO COUNCIL FOR THE PROVISION OF A WATER METER AT THIS TIME.
- 18. THE POLYETHYLENE SERVICE LINE MUST COMPLY WITH AS/NZ4130 SERIES 1 DN20 PN16.
- 19. TAPPING BANDS MUST BE USED WHEN PROVIDING CONNECTION, UNLESS OTHERWISE APPROVED BY COUNCIL
- 20. PROPERTY SERVICES WITHIN ANY FOOTWAY SHALL BE POSITIONED AT 90+/-5 DEGREES TO THE WATER MAIN OR KERB. WHERE REQUIRED TO CROSS THE ROAD CARRIAGEWAY, PROPERTY SERVICES SHALL BE LOCATED WITHIN THE SERVICE DUCTS (CONDUITS) POSITIONED AT 90+/-5 DEGREES TO THE ROAD CARRIAGEWAY OR FROM SIDE BOUNDARY TO SIDE BOUNDARY AND EXTENDING BEHIND EACH KERB IN ACCORDANCE WITH CLAUSE 5.11.3 OF THE SOUTH EAST

QUEENSLAND WATER SUPPLY AND SEWERAGE DESIGN AND CONSTRUCTION CODE. THE CONDUIT SHALL HAVE A MAXIMUM LENGTH OF 25m AND EXTEND 300mm BEYOND THE BACK OF THE KERB OR CONCRETE/PAVED AREA.

21. WHERE PRACTICABLE. PROPERTY SERVICE CONNECTION POINTS MUST BE LOCATED 300mm FROM THE RESIDENTIAL PROPERTY SIDE BOUNDARY ON THE OPPOSITE SIDE OF THE ALL OTMENT TO THE ELECTRICAL SERVICE PILLAR-BOX. SERVICES MUST BE LOCATED AT LEAST 1.0m FROM ALL FLECTRICAL SOURCES AND CLEAR OF EXISTING OR FUTURE DRIVEWAYS. PROPERTY SERVICES LAID PARALLEL TO THE FOOTPATH AND/OR PROPERTY BOUNDARY ARE NOT PERMITTED (SEQ CODE CLAUSE 5.11.5). TERMINATE ALL WATER SERVICES AFTER INSTALLATION OF THE BALL VALVE (PRIOR TO THE WATER METER)

VEGETATION PROTECTION

- TREES LOCATED ALONG THE EOOTPATH SHALL BE, TRANSPLANTED 1 PRIOR TO CONSTRUCTION, OR REPLACED IF DESTROYED.
- WHEN WORKING WITHIN 4m OF TREES, RUBBER OR HARDWOOD GIRDLES SHALL BE CONSTRUCTED WITH 1.8m BATTENS CLOSELY SPACED AND ARRANGED VERTICALLY FROM GROUND LEVEL. GIRDLES SHALL BE STRAPPED TO TREES PRIOR TO CONSTRUCTION AND REMAIN UNTIL COMPLETION.
- TREE ROOTS SHALL BE TUNNELLED UNDER, RATHER THAN SEVERED, IE ROOTS ARE SEVERED THE DAMAGED AREA SHALL BE TREATED WITH A SUITABLE FUNGICIDE. CONTACT RELEVANT COUNCIL ARBORIST FOR FURTHER ADVICE.
- ANY TREE LOPPING REQUIRED SHOULD BE UNDERTAKEN BY AN APPROVED ARBORIST

SOIL

- TOPSOIL AND SUBSOIL SHALL BE STOCKPILED SEPARATELY.
- CARE SHALL BE TAKEN TO PREVENT SEDIMENT FROM ENTERING THE 2. STORMWATER SYSTEM. THIS MAY INVOLVE PLACING APPROPRIATE SEDIMENT CONTROLS AROUND STOCKPILES.

- SILTATION CONTROL MEASURES SHALL BE PLACED DOWNSTREAM OF ANY EXCAVATION WORK.
- APPROPRIATE SEDIMENT CONTROLS SHALL BE USED TO PREVENT SEDIMENT FROM ENTERING THE CREEK.
- NO SOIL SHALL BE STOCKPILED WITHIN 5m OF THE CREEK. 3

REHABILITATION

- PRE-DISTURBANCE SOIL PROFILES AND COMPACTION LEVELS SHALL 1 BE REINSTATED.
- PRE-DISTURBANCE VEGETATION PATTERNS SHALL BE RESTORED, ALL DISTURBED AREAS ASSOCIATED WITH CONSTRUCTION SHALL BE REHABILITATED, HEAVILY COMPACTED AREAS SHOULD BE RIPPED PRIOR TO TREATMENT
- ALL DISTURBED AREAS ARE TO BE LEFT IN STABLE CONDITION. ALL PLANTING/RE-VEGETATION WILL NEED TO BE MAINTAINED
- THROUGHOUT THE MAINTENANCE PERIOD

Brissane QLD FOR CONSTRUCTION KK PB Brissane QLD for Construction KK PB Brissane QLD for Construction SALE CLIENT CLIENT MIRVACC 18/08/2023 B ISSUED FOR CONSTRUCTION KK PB FOR CONSTRUCTION <													
Image: Note of the construction Image: Note of the construction			FOR CONSTRUCTION						SCALE			CLIENT	MIRVAC
18/08/2023 B ISSUED FOR CONSTRUCTION KK PB 18/08/2023 A ORSIGNAL ISSUE KK PB 05/02/2023 A ORSIGNAL ISSUE KK PB VDATE PV DESCRIPTION KK PB VDATE PV DESCRIPTION KK PB							ANDREW LANGDON		0	200	400 600m	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISI
	18/08/2023	в	ISSUED FOR CONSTRUCTION KK	РВ		BRISBANE, QLD 4000		PED		SCALE 1:10	0000 (A1)	LOCATION	TEVIOT ROAD, GREENBANK
REVISIONS PATRICK BRADY RPEQ /112 ORIGINAL SHEET SIZE A1		A REV	DESCRIPTION REC	PB APP	Premise		PATRICK BRADY	RPEQ 7112		ORIGINAL SHE	ET SIZE A1	SHEET TITLE	WATER RETICULATION LOCALITY PLA

CONSTRUCTION REQUIREMENTS

- LIVE WATER CONNECTIONS TO BE CARRIED OUT BY CONTRACTOR IN ACCORDANCE WITH A VALID NETWORK ACCESS PERMIT UNDER LOGAN 1. WATER SUPERVISION AT DEVELOPERS EXPENSE AT LOCATION MARKED.
- PRIOR TO ANY EXCAVATION, CONTRACTOR IS TO LOCATE ACTUAL POSITIONS OF PUBLIC SERVICE UTILITIES BY POT HOLES. LIPON COMPLETION OF ALL WORKS CONTRACTORS SHALL SUPPLY THE SUPERVISING RPEQ DETAILED "AS CONSTRUCTED" INFORMATION
- OF THE WORK "AS CONSTRUCTED" INFORMATION SHALL COMPLY WITH CURRENT SEO CODE OR LOCAL AUTHORITY STANDARDS FOR PLAN AND DIGITAL INFORMATION. CONTRACTOR IS TO BE RESPONSIBLE FOR ARRANGING ALL LOGAN 4
- WATER CONNECTIONS AND PAYMENTS OF CONNECTION FEES

TRENCH SPOIL NOTE:

SPOILAGE OF EXCESS MATERIAL TO BE PLACED INTO THE SOUTHERN DAM REHABILITATION AREA INCLUDING ALL LEVEL ONE COMPACTION REQUIREMENTS AND TESTING IN ACCORDANCE WITH MORRISON GEOTECHNICAL SPECIFICATION AND ALL LOCAL AUTHORITY STANDARDS, AND SHALL BE FREE DRAINING

EXCAVATION IN ROCK NOTE:

CONTRACT SHALL INCLUDE TREATING, SIZING CONDITIONING AND PROCESSING ALL TYPES OF ROCK IN ALL EXCAVATIONS, PROCESSING TO BE COMPLETED AS PER MORRISON GEOTECHNICAL REPORTS TO ENSURE LEVEL 1 IS ACHIEVED

INDEMNITY - EXISTING SERVICES

NOT WITHSTANDING THAT EXISTING SERVICES MAY OR MAY NOT BE SHOWN ON THESE DRAWINGS, NO RESPONSIBILITY IS TAKEN BY THE ENGINEER OR THE PRINCIPAL FOR THIS INFORMATION WHICH HAS BEEN SUPPLIED BY OTHERS. THE DETAILS ARE PROVIDED FOR INFORMATION ONLY. THE CONTRACTOR SHALL ASCERTAIN THE POSITION OF ALL UNDERGROUND SERVICES PRIOR TO EXCAVATION AND SHALL BE RESPONSIBLE FOR THE COST OF REPAIRS TO DAMAGES CAUSED AS A RESULT OF THE WORKS.

RPEQ CERTIFICATION

THE CONSTRUCTION OF THE WATER RETICULATION WORK SHOWN ON THIS DRAWING MUST BE SUPERVISED BY AN ENGINEER WHO HAS REPOREGISTRATION, WORKS NOT COMPLYING WITH THIS REQUIREMENT WILL NOT BE PERMITTED TO CONNECT INTO LOGAN WATER RETICULATIO SYSTEM. ALL RPEQ CERTIFIED DRAWINGS COMPLY WITH SE CODE AND LOGAN WATER REQUIREMENTS

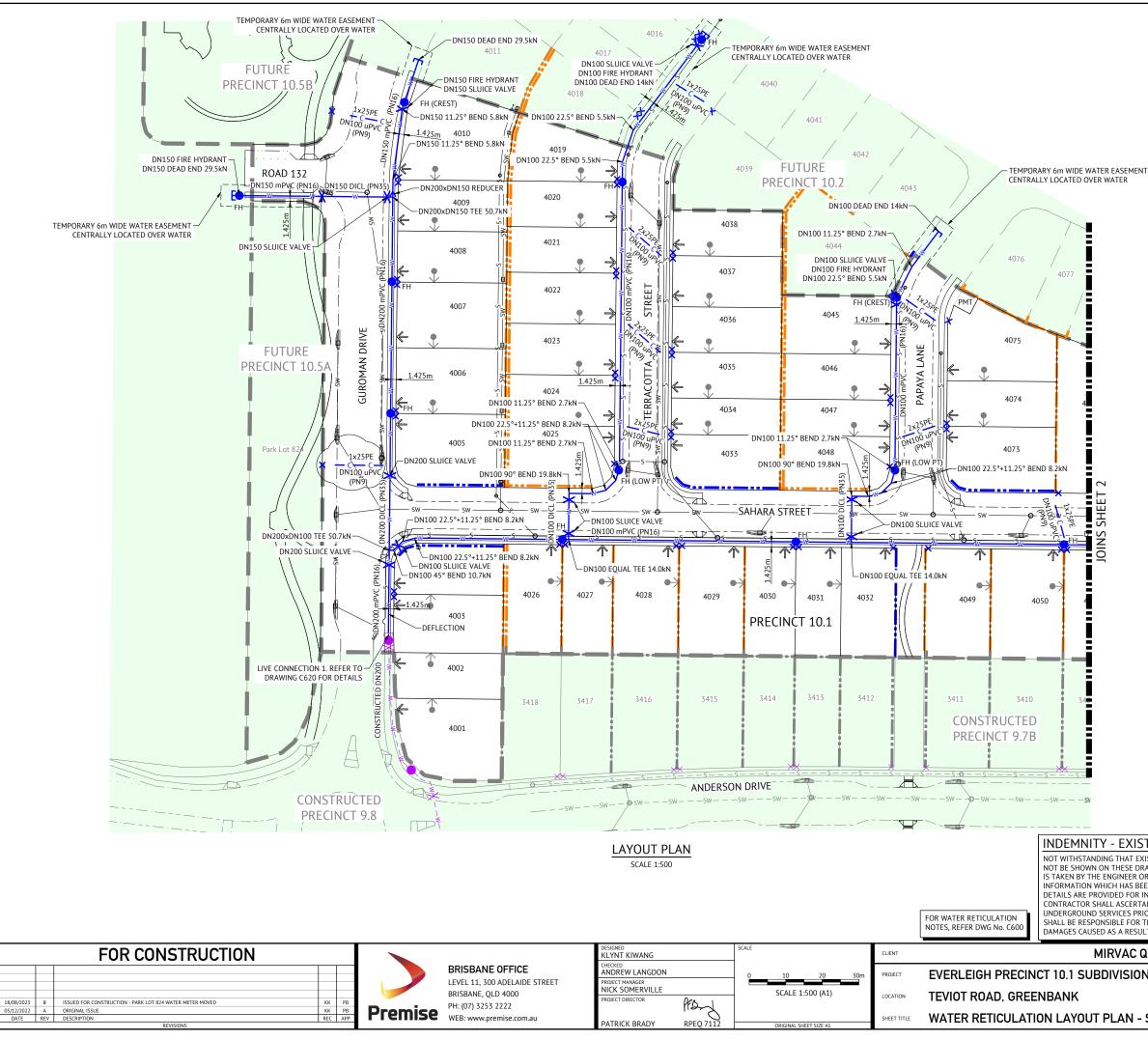
INSPECTION REQUIREMENTS

PRIOR TO COMMENCEMENT OF WORKS, CONTACT PREMISE (07) 3253 2222 AND LOGAN WATER TO CONFIRM INSPECTIO REQUIREMENTS INCLUDING LIVE CONNECTIONS.

MINIMUM 48 HOURS NOTICE IS REQUIRED

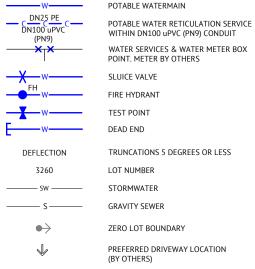
INSPECTIONS ARE REQUIRED TO BE ORGANIZED WITH PREMISE AND LOGAN WATER. ANY COSTS ASSOCIATED WITH ENGAGING LOGAN WATER TO UNDERTAKE INSPECTIONS OUTSIDE OF THE FEE PAID SHALL BE BORNE BY THE CONTRACTOR

ALL ENVIRONMENT PROTECTION MEASURES SHALL BE IMPLEMENTED PRIOR TO COMMENCING ANY CONSTRUCTION WORK. INCLUDING CLEARING


ALL WATER CONSTRUCTION WORK UNDERTAKEN BY THE CONTRACTOR SHALL COMPLY WITH THE REQUIREMENTS OF THE OUEENSLAND WORK HEALTH AND SAFETY ACT 2011. CONTACT THE DIVISION OF WORKPLACE HEALTH & SAFETY FOR INFORMATION PHONE: 1300 362 128

SEQ CODE STD DRAWING SCHEDULE

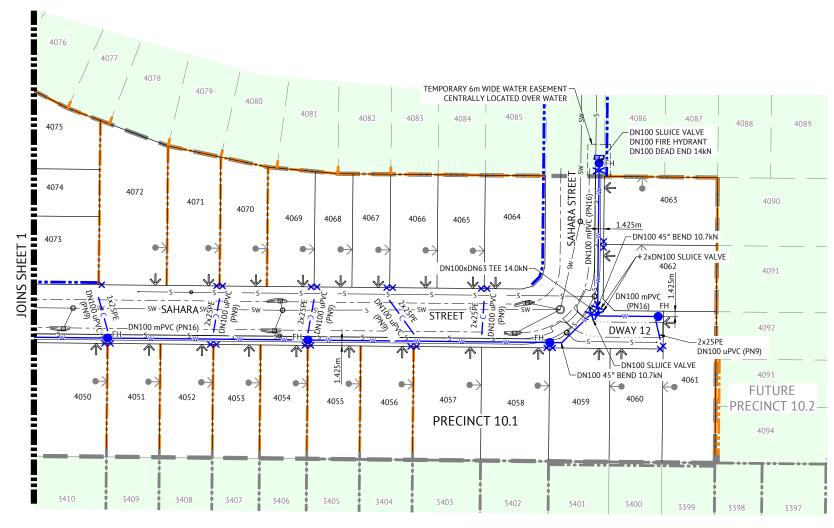
SOIL CLASSIFICATION EMBEDMENT AND TRENCH FILL THRUST BLOCK DETAILS VALVE THRUST BLOCKS IDENTIFICATION MARKERS


SEO-WAT-1200-1 SEQ-WAT-1200-2 SEO-WAT-1205-1 SEO-WAT-1206-1 SEO-WAT-1300-1.2

AC QLD PTY LTD	JOB CODE	
SION DEVELOPMENT	MIR-100	01
	SHEET NUMBER	REV
AN & NOTES	C600	В

LEGEND - PROPOSED

ZERO LOT BOUNDARY PREFERRED DRIVEWAY LOCATION (BY OTHERS) SITE BOUNDARY PROPOSED CONCRETE SLEEPER RETAINING WALL PROPOSED CONCRETE PANEL RETAINING WALL PROPOSED CONCRETE FOOTPATH & KERB RAMP PADMOUNT TRANSFORMER

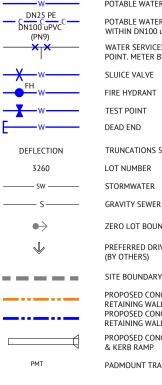

LEGEND - CONSTRUCTED

w
— — — — — — — — — — — — — — — — — — —
—
— — <u> </u> w— — w—
w
X
— — — S — — — S —

PM1

WATER
SLUICE VALVE
FIRE HYDRANT
TEST POINT
DEAD END
WATER METER
STORMWATER
GRAVITY SEWER

EXISTING SERVICES HAT EXISTING SERVICES MAY OR MAY ESE DRAWINGS, NO RESPONSIBILITY HEER OR THE PRINCIPAL FOR THIS HAS BEEN SUPPLIED BY OTHERS. THE FOR INFORMATION ONLY. THE SCERTAIN THE POSITION OF ALL ES PRIOR TO EXCAVATION AND E FOR THE COST OF REPAIRS TO RESULT OF THE WORKS.	T EXISTING SERVICES MAY OR MAY E DRAWINGS, NO RESPONSIBILITY RR OR THE PRINCIPAL FOR THIS S BEEN SUPPLIED BY OTHERS. THE OR INFORMATION ONLY. THE ERTAIN THE POSITION OF ALL OR THE COST OF REPAIRS TO OR THE COST OF REPAIRS TO START DATE					
AC QLD PTY LTD SION DEVELOPMENT	JOB CODE MIR-10	01				
N - SHEET 1		sheet number C610	B Rev			



LAYOUT PLAN SCALE 1:500

		FOR CONSTRUCTION				DESIGNED KLYNT KIWANG		SCALE			CLIENT	MIRVA
					BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	CHECKED ANDREW LANGDON PROJECT MANAGER		0 10	20	30m	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVIS
18/08/2023 01/03/2023	C	ISSUED FOR CONSTRUCTION UPDATED AS PER RFI DATED 27/02/23	KK PB		BRISBANE, QLD 4000	NICK SOMERVILLE PROJECT DIRECTOR	OCA I	SCA	LE 1:500 (A1)	_	LOCATION	TEVIOT ROAD, GREENBANK
05/12/2022 DATE	A REV	ORIGINAL ISUE DESCRIPTION	KK PB REC APP	Premise	PH: (07) 3253 2222 WEB: www.premise.com.au		PFD-J				SHEET TITLE	WATER RETICULATION LAYOUT PLA
		REVISIONS			•	PATRICK BRADY	RPEQ 7112	ORIGIN	NAL SHEET SIZE A1			

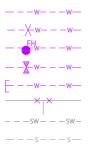
LEGEND - PROPOSED

POTABLE WATERMAIN

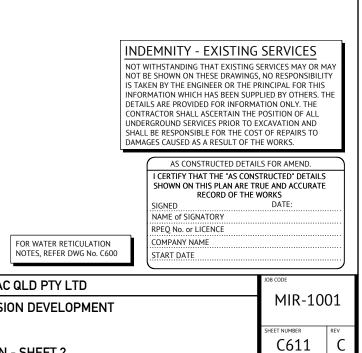
POTABLE WATER RETICULATION SERVICE WITHIN DN100 uPVC (PN9) CONDUIT WATER SERVICES & WATER METER BOX POINT. METER BY OTHERS

TRUNCATIONS 5 DEGREES OR LESS

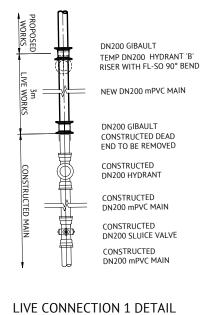
ZERO LOT BOUNDARY

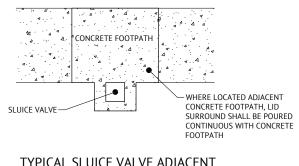

PREFERRED DRIVEWAY LOCATION (BY OTHERS)

SITE BOUNDARY


PROPOSED CONCRETE SLEEPER RETAINING WALL PROPOSED CONCRETE PANEL RETAINING WALL PROPOSED CONCRETE FOOTPATH & KERB RAMP

PADMOUNT TRANSFORMER


LEGEND - CONSTRUCTED


WATER SLUICE VALVE FIRE HYDRANT TEST POINT DEAD END WATER METER STORMWATER GRAVITY SEWER

N - SHEET 2

SCALE 1:25

TIFICAL SLUICE VALVE ADJACENT	
CONCRETE FOOTPATH DETAIL	
NTS	

FOR CONSTRUCTION		DESIGNED SCALE KLYNT KIWANG	CLIENT MIRVAC QLD PTY LTD	JOB CODE
18/08/2023 B ISSUED FOR CONSTRUCTION KK PB	BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 PH: (07) 3253 2222 WEB: www.premise.com.au	CHECKED ANDREW LANGDON PROJECT MANAGER NICK SOMERVILLE PROJECT DIRECTOR PATRICK BRADY RPEQ 7112 ORIGINAL SHEET SIZE A1	PROJECT EVERLEIGH PRECINCT 10.1 SUBDIVISION DEVELOPMENT LOCATION TEVIOT ROAD, GREENBANK SHEET TITLE WATER LIVE CONNECTION AND TYPICAL DETAILS	MIR-1001 SHEET NUMBER C620 B

<u> </u>	e connection no res.
1. 2. 3. 4.	LIVE CONNECTIONS BY LOGAN WATER LIVE CONNECTION IN ACCORDANCE WITH SEQ-WAT-1303-1 THRUST BLOCKS NOT SHOWN FOR CLARITY. PRE-CHLORINATION FITTINGS AS REQUIRED.
	AS CONSTRUCTED DETAILS FOR AMEND.
	CERTIFY THAT THE "AS CONSTRUCTED" DETAILS HOWN ON THIS PLAN ARE TRUE AND ACCURATE RECORD OF THE WORKS
	IGNED DATE: AME of SIGNATORY
	PEQ No. or LICENCE
	OMPANY NAME TART DATE

LIVE CONNECTION NOTES:

H

EROSION RISK RATING BASED ON AVERAGE MONTHLY RAINFALL (SOURCE TABLE 4.4.2 IECA 2008)												
MONTHLY DATA	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEPT.	OCT.	NOV.	DEC.
MEAN RAINFALL	134.9	152.2	128.3	77.5	71.7	65.8	46.7	35.9	34.3	78.9	97.8	125.7
EROSION RISK	HIGH	HIGH	HIGH	MODERATE	MODERATE	MODERATE	MODERATE	LOW	LOW	MODERATE	MODERATE	HIGH
	VERY LOW RIS	5K: 0 TO 30mm										
	LOW RISK: 30	+ TO 45mm										
	MODERATE RISK: 45+ TO 100mm											
	HIGH RISK: 100+ TO 225mm											
	EXTREME RISI	<: >225mm										

CATCHMENT RISK ASSESSMENT - ANNUAL SOIL LOSS

CATCHMENT ID	AREA (HA)	R	к	SLOPE LENGTH (m)	SLOPE (%)	LS	Р	с
catchment A	7.50	2627	0.050	80	8.0	2.05	1.3	1.00
catchment B	0.24	2627	0.050	80	6.5	2.05	1.3	1.00

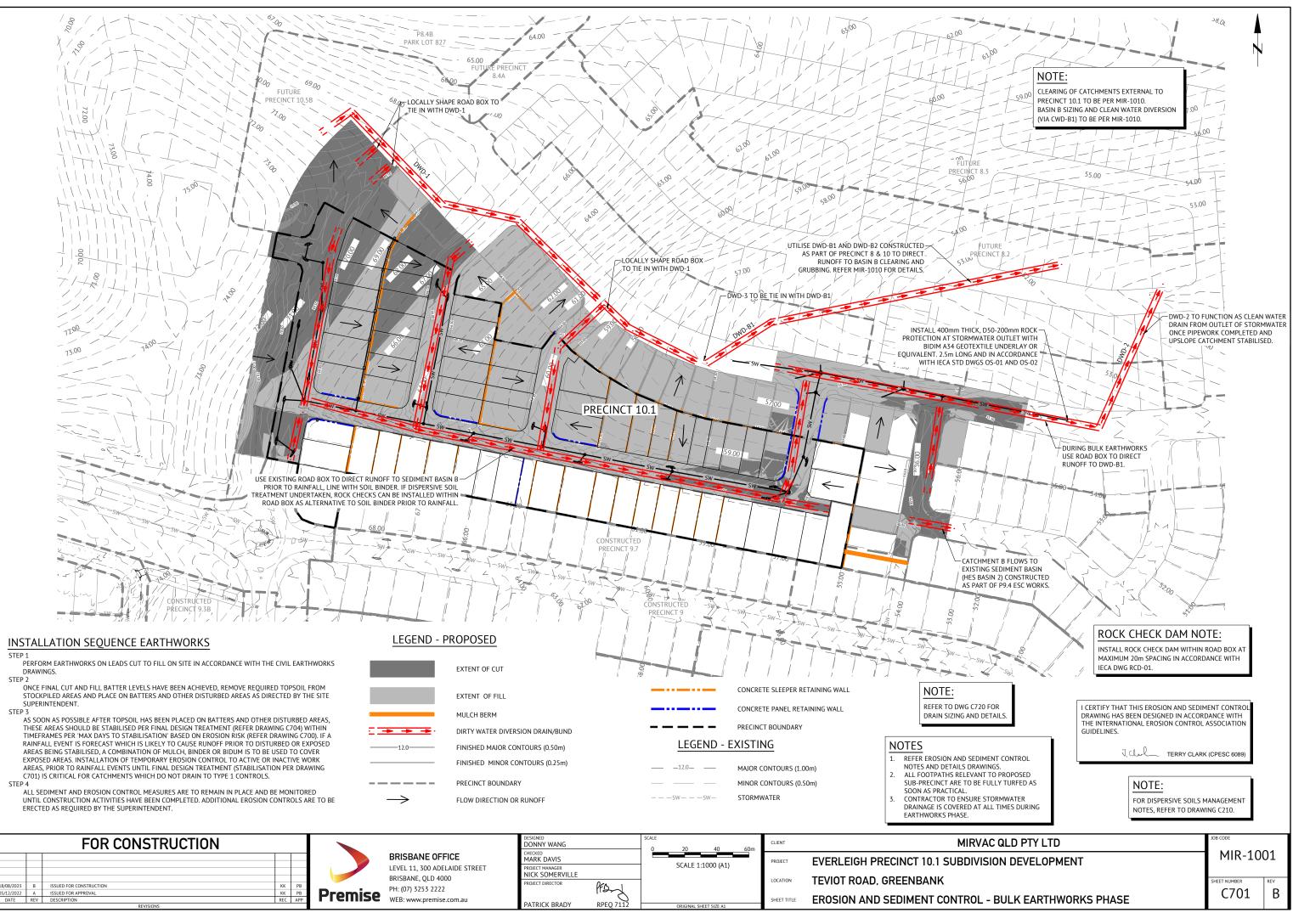
EROSION RISK RATING

APPLICABLE MONTH	EROSION RISK RATING	ADVANCE LAND CLEARING ALLOWED (WEEKS WORK)	MAX DAYS TO STABILISATION	STAGED CONSTRUCTION AND STABILISATION OF EARTH BATTERS > 6H : 1V
	VERY LOW	8	30 (60%)	
AUG. SEPT.	LOW	8	30 (70%)	
APR. MAY. JUN. JUL. OCT. NOV.	MODERATE	6	20 (70%)	х
JAN. FEB. MAR. DEC	HIGH	4	10 (75%)	X
	EXTREME	2	10 (80%)	Х

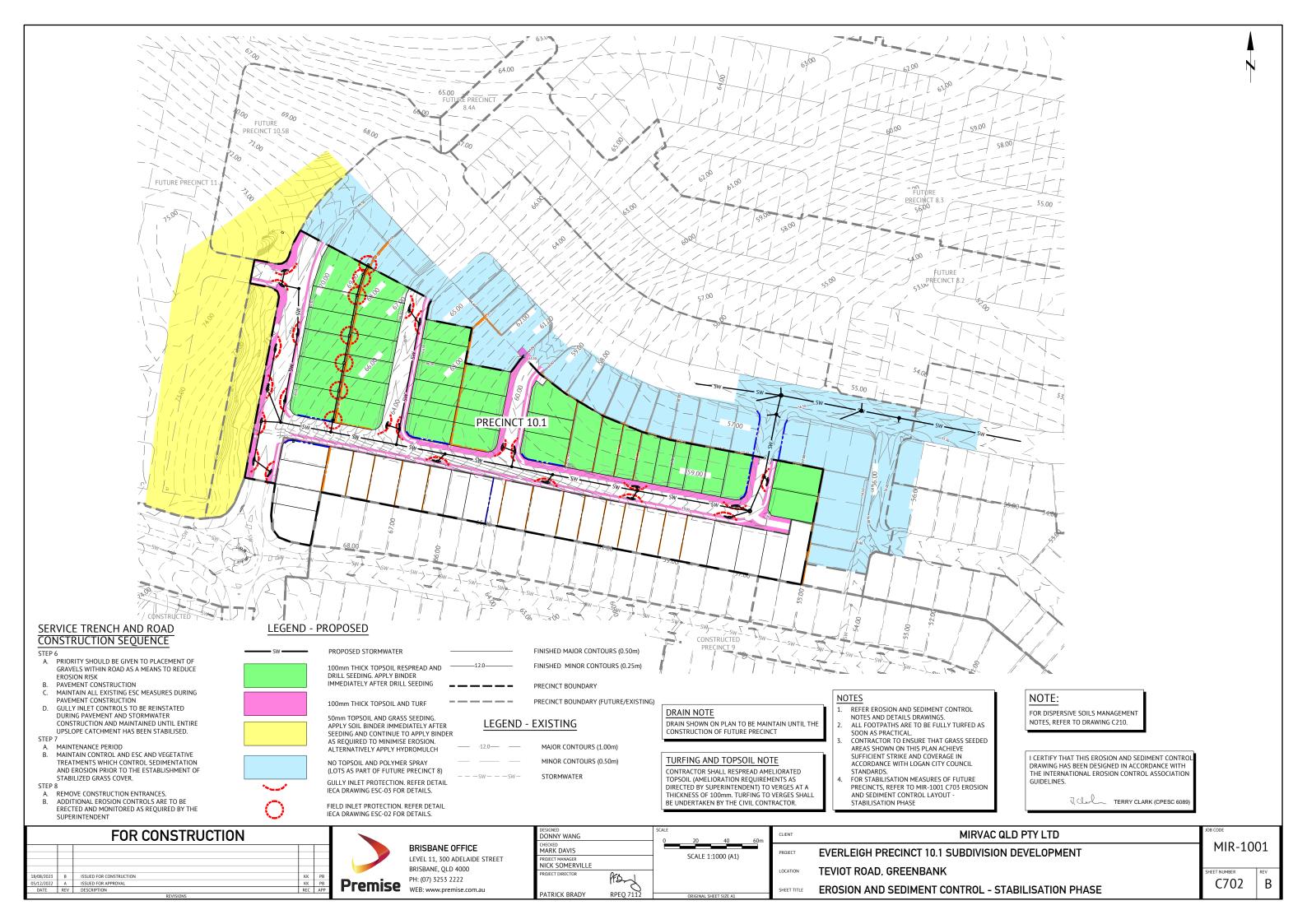
		FOR CONSTRUCTION			
18/08/2023	В	ISSUED FOR CONSTRUCTION	КК	PB	
05/12/2022	Α	ISSUED FOR APPROVAL	КК	PB	l Dr
DATE	REV	DESCRIPTION	REC	APP	
		REVISIONS			

BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET BRISBANE, QLD 4000 remise PH: (07) 3253 2222 WEB: www.premise.com.au

						-	
DESIGNED DONNY WANG		SCALE 0	20	40	60m	CLIENT	MIRVAC
CHECKED MARK DAVIS		_ —		:1000 (A1)		PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISIO
PROJECT MANAGER NICK SOMERVILLE PROJECT DIRECTOR			56,422 1	.1000 (. 11)		LOCATION	TEVIOT ROAD, GREENBANK
PROJECT DIRECTOR	FB					SHEET TITLE	EROSION AND SEDIMENT CONTROL - E
PATRICK BRADY	RPEQ 7112		ORIGINAL S	SHEET SIZE A1		SHEET THEE	ENUSION AND SEDIMENT CONTROL - E



EXISTING CATCHMENTS


REV C700

IEET NUMBER

В

SHEET TITLE	FROSION AND SEDIMEN

ROLES AND RESPONSIBILITIES

EROSION & SEDIMENT CONTROL NOTES

- LOCATION & LEVELS OF ALL EXISTING SERVICES TO BE CONFIRMED ON SITE BY CONTRACTOR PRIOR TO THE COMMENCEMENT OF CONSTRUCTION.
- REFER EARTHWORKS DRAWINGS FOR ADDITIONAL NOTES. ALL TRENCHES, FOOTPATH EXCAVATIONS & STOCKPILES TO BE PROTECTED BY TEMPORARY
- SEDIMENT FENCES UNTIL 80% GRASS COVERAGE IS ACHIEVED TO DISTURBED AREAS. 4. EVERY PRECAUTION IS TO BE TAKEN TO PREVENT THE TRANSPORT OF SILT INTO THE NEWLY LAID
- STORMWATER PIPES THAT ARE CONNECTED TO THE DOWNSTREAM PIPE SYSTEMS, AND ANY EXISTING OPEN CHANNELS 5. THESE NOTES SHALL BE READ IN CONJUNCTION WITH THE REQUIREMENTS OF THE CONTRACT
- DOCUMENTS THE EROSION AND SEDIMENT CONTROL WORKS SHALL COMPLY WITH THE REQUIREMENTS OF THE 6.
- LOCAL AUTHORITIES EROSION AND SEDIMENT CONTROL STANDARDS. THE CONTRACTOR SHALL TAKE ALL REASONABLE AND PRACTICABLE MEASURES TO: 7.
- ALLOW STORMWATER TO PASS THROUGH THE SITE IN A CONTROLLED MANNER AND AT NON EROSIVE FLOW VELOCITIES;
- MINIMISE SOIL EROSION FROM WATER AND WIND; MINIMISE ADVERSE EFFECTS OF SEDIMENT RUN-OFF;
- MINIMISE OR PREVENT ENVIRONMENTAL HARM ASSOCIATED WITH DISCHARGES FROM THE SITE (E.G. THE EFFECTS OF SEDIMENTATION ON THE ENVIRONMENTAL VALUES OF RECEIVING WATERS); AND
- ENSURE THAT THE VALUE AND USE OF RESIDENTIAL PROPERTIES ADJACENT TO THE DEVELOPMENT (SUCH AS DRAINAGE AND ROADS) ARE NOT DIMINISHED AS A RESULT OF THE MIGRATION OF SEDIMENT FROM THE DEVELOPMENT. THE CONTRACTOR SHALL APPOINT AN APPROPRIATELY EXPERIENCED PERSON TO BE MADE
- RESPONSIBLE FOR IMPLEMENTATION OF THE ESC. ALL ESC MEASURES SHALL BE INSPECTED:
- AT LEAST DAILY (WHEN WORK IS OCCURRING ON SITE).
- AT LEAST WEEKLY (WHEN WORK IS NOT OCCURRING ON SITE).
- WITHIN 24 HOURS OF EXPECTED RAINFALL.
- WITHIN 18 HOURS OF RAINFALL OCCURRING
- MAINTENANCE OF ESC MEASURES SHALL OCCUR TO ENSURE THEY ARE OPERATING EFFICIENTLY AND IN ACCORDANCE WITH THE FOLLOWING SCHEDULE

ESC MEASURES	MAINTENANCE TRIGGER	TIME FRAME FOR UNDERTAKING MAINTENANCE
ESC MEASURES	WHEN SETTLED SEDIMENT VOLUME EXCEEDS 25% OF THE CAPACITY OF THE ESC MEASURE	BY THE END OF THE DAY

- INSTALL DIVERSION CATCH DRAINS UPSTREAM OF, AND SILT FENCE DOWNSTREAM OF, STOCKPILES. STOCKPILES ARE TO BE LOCATED AWAY FROM EROSION HAZARD AREAS SUCH AS DRAINAGE LINES AND STEEP SLOPES.
- STOCKPILES ARE TO BE PROTECTED FROM EROSION BY THE WIND.
 ADEQUATE SUPPLIES OF EMERGENCY MAINTENANCE MATERIALS, INCLUDING (BUT NOT LIMITED TO) TIE WIRE, STAKES, FILTER CLOTH, WIRE MESH AND CLEAN GRAVEL SHOULD BE AVAILABLE ON-SITE. 11. ESC MAINTENANCE ACTIVITIES ARE TO BE RECORDED IN AN ON-SITE REGISTER. THE REGISTER IS TO
- BE MAINTAINED FOR THE DURATION OF THE WORKS AND IS TO BE MADE AVAILABLE TO THE SUPERINTENDENT.
- 12. DISTURBED AREA ARE TO BE STABILISED AS SOON AS POSSIBLE ON COMPLETION OF BULK
- EARTHWORKS, LOTS TO BE STABILISED FOLLOWING RESPREADING OF TOPSOIL 13. SUPPLEMENTARY ESC MEASURES SHALL BE DIRECTED BY THE SUPERINTENDENT.

MAINTENANCE

- INSPECT ALL CATCH DRAINS AT LEAST WEEKLY AND AFTER RUNOFF-PRODUCING STORM 1.
- EVENTS AND REPAIR ANY SLUMPS, BANK DAMAGE. OR LOSS OF FREEBOARD. CLOSELY INSPECT THE OUTER EDGES OF THE ROCK PROTECTION. ENSURE WATER ENTRY 2.
- INTO THE ROCK -LINED AREA IS NOT CAUSING EROSION ALONG THE EDGE OF THE ROCK PROTECTION.
- CAREFULLY CHECK THE STABILITY OF THE ROCK LOOKING FOR INDICATIONS OF PIPING, SCOUR HOLES, OR BANK FAILURES.
- REPLACE OR REPOSITION THE SURFACE ROCK SUCH THAT THE DRAIN FUNCTIONS AS REQUIRED AND THE DRAIN'S REQUIRED HYDRAULIC CAPACITY IS NOT REDUCED. REPLACE ANY DISPLACED ROCK WITH ROCK OF SIGNIFICANTLY (MINIMUM 110%) LARGER
- 5. SIZE THAN THE DISPLACED ROCK. ENSURE SEDIMENT IS NOT PARTIALLY BLOCKING THE DRAIN. WHERE NECESSARY,
- 6
- REMOVE ANY DEPOSITED MATERIAL TO ALLOW FREE DRAINAGE. DISPOSE OD ANY SEDIMENT OF FILL IN A MANNER THAT WILL NOT CREATE AN EROSION OR POLITION HAZARD

ROLE	RESPONSIBILITY
PROJECT MANAGER	OVERALL RESPONSIBILITY OF ESC IMPLEMENTAT
	NOTIFY THE ENVIRONMENTAL MANAGER IMMEDI. NON-COMPLIANCE WITH ESCP
	• ENSURE THE PROMPT IMPLEMENTATION OF MEA AND SEDIMENT GENERATION
SITE SUPERVISOR / FOREMEN	MONITOR DAILY RAINFALL
	NOTIFY ENVIRONMENTAL ADVISOR/CONSULTANT RAINFALL OCCURS IN THE PREVIOUS 24 HOURS
	 MAINTAIN CURRENT RECORDS OF RAINFALL, STO QUALITY, TREATMENT PRACTICES, DISCHARGE VOL
	• INSTALLATION AND MAINTENANCE OF ESC
ENVIRONMENTAL MANAGER	• PROVIDE DESIGN INFORMATION AS REQUIRED
	• CONDUCT IN-SITU MONITORING (AS REQUIRED)
	COLLECT AND SUBMIT SAMPLES TO LABORATORY
	• COLLATE RESULTS AND PREPARE REPORTS (AS RI
	 CONDUCT SITE INSPECTIONS AN AUDITS (AS REQ
	• INSPECT ESC INSTALLATION AND MAINTENANCE
	• INSPECT OFFSITE IMPACTS AND MANAGEMENT
	PROVIDE ADVICE REGARDING ESC SITE IMPROVEN
ALL PERSONNEL	 REPORT ANY DAMAGE TO ESC DEVICES AND ANY ENVIRONMENTAL HARM IN LINE WITH DUTY TO NO REQUIREMENTS OF THE ENVIRONMENTAL PROTECT

CORRECTIVE AND PREVENTATIVE ACTION

AN ENVIRONMENTAL INCIDENT WITH RESPECT TO THE ESCP IS DEFINED AS ANY OCCURRENCE WHERE IS RELEASED FROM THE SITE, WHETHER CONTROLLED OR UNCONTROLLED, OR WHERE STORM WATER (CONTROLLED) FROM SITE WHICH DOES NOT MEET THE WATER QUALITY REQUIREMENTS.

ALL INCIDENTS AND NON-CONFORMANCES ARE TO BE REPORTED, INVESTIGATED AND CORRECTED IN A WITH THE ESCP TO ENSURE EFFECTIVE SOIL AND WATER QUALITY MANAGEMENT PRACTICES AT ALL TH

BEST PRACTICE SITE MANAGEMENT REOUIRES ALL ESC MEASURES TO BE INSPECTED BY THE CONTRACT NOMINTED REPRESENTATIVE AT LEAST DAILY WHEN RAIN IS OCCURRING, WITHIN 24 HOURS PRIOR TO RAINFALL, AND WITHIN 18 HOURS OF A RAINFALL EVENT OF SUFFICIENT INTENSITY AND DURATION TO RUNOFF (IECA, 2008). SUCH INSPECTIONS MUST CHECK:

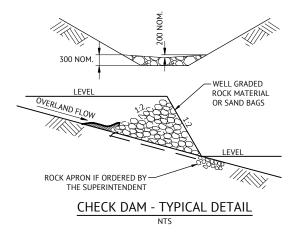
- DAILY SITE INSPECTIONS (DURING PERIODS OF RUNOFF PRODUCING RAINFALL)
- ALL DRAINAGE, EROSION AND SEDIMENT CONTROL MEASURES
- OCCURRENCES OF EXCESSIVE SEDIMENT DEPOSITION (WHETHER ON-SITE OR OFF-SITE)
 ALL SITE DISCHARGE POINTS (INCLUDING DEWATERING ACTIVITIES AS APPROPRIATE)
- WEEKLY SITE INSPECTIONS (EVEN IF WORK IS NOT OCCURRING ON-SITE)
- ALL DRAINAGE, EROSION AND SEDIMENT CONTROL MEASURES OCCURRENCES OF EXCESSIVE SEDIMENT DEPOSITION (WHETHER ON-SITE OR OFF-SITE)
- OCCURRENCES OF CONSTRUCTION MATERIALS, LITTER OR SEDIMENT PLACED, DEPOSITED, WASH OR BLOWN FROM THE SITE, INCLUDING DEPOSITION BY VEHICULAR MOVEMENTS.
- LITTER AND WASTE RECEPTORS
- OIL, FUEL AND CHEMICALS STORAGE FACILITIES
- PRIOR TO ANTICIPATED RUNOFF PRODUCING RAINFALL
- ALL DRAINAGE, EROSION AND SEDIMENT CONTROL MEASURES
- ALL TEMPORARY FLOW DIVERSION AND DRAINAGE WORKS
- FOLLOWING RUNOFF PRODUCING RAINFALL
- ALL DRAINAGE. EROSION AND SEDIMENT CONTROL MEASURES
- OCCURRENCES OF EXCESSIVE SEDIMENT DEPOSITION (WHETHER ON-SITE OR OFF-SITE) OCCURRENCES OF CONSTRUCTION MATERIALS, LITTER OR SEDIMENT PLACED, DEPOSITED, WASH OR BLOWN FORM THE SITE, INCLUDING DEPOSITION BY VEHICULAR MOVEMENTS.

		FOR CONSTRUCTION					DESIGNED DONNY WANG		SCALE	CLIENT	MIRVAC
						BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	CHECKED MARK DAVIS PROJECT MANAGER		_	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISIO
18/08/2023	в	ISSUED FOR CONSTRUCTION	КК	PB		BRISBANE, QLD 4000 PH: (07) 3253 2222	NICK SOMERVILLE PROJECT DIRECTOR	PFD	-	LOCATION	TEVIOT ROAD, GREENBANK
05/12/2022 DATE	A REV	ISSUED FOR APPROVAL DESCRIPTION REVISIONS	KK REC A	PB APP	Premise	WEB: www.premise.com.au	PATRICK BRADY	RPEQ 7112	ORIGINAL SHEET SIZE A1	SHEET TITLE	EROSION AND SEDIMENT CONTROL N

EEUATELY OF ANY MEASURES TO MITIGATE EROSION ANY WHEN RUNOFF GENERATING STORAGE VOLUMES, WATER VOLUME,				
AC QLD PTY LTD VAC QLD PTY LTD ISION DEVELOPMENT JRANNING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION JRANNING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION JRANNING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION JRANNING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION JRANNING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION JRANNING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION JRANNING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION JRANNING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION JRANNING HAS BEEN DESIGNED IN ACCORDANCE HIGH MIR-1001 SHEET NUMBER				
weasures to mitigate erosion ant when runner generating toback volumes, water volumes (as appropriate) b) consection	TATION			
AT WHEN RUNOFF GENERATING TORAGE VOLUMES (AS APPROPRIATE) D D D OPY OF A REQUIRED) SA REQUIRED) SEQUIRED SEQUIRED WEMENT (AS REQUIRED) WE POTENTIAL OR ACTUAL TOPOTTY INDER THE ENDING WE POTENTIAL OR ACTUAL TOPOTTY INDER THE ENDING CCORDANCE 45. CCORDANCO	IEDIATELY OF ANY			
STORAGE VOLUMES, WATER VOLUMES (AS APPROPRIATE) D D O O O O O O O O O O O O O	MEASURES TO MITIGATE EROSION			
STORAGE VOLUMES, WATER VOLUMES (AS APPROPRIATE) D D O O O O O O O O O O O O O				
VOLUMES (AS APPROPRIATE) D D D O O O O O O O O O O O O O O O O	ANT WHEN RUNOFF GENERATING			
In the second se				
D) ONY US REQUIRED: SREQUIRED: REQUIRED: WYPOTETTIAL CS REQUIRED: WYPOTETTIAL CS REQUIRED: WYPOTETTIAL CS REQUIRED: WYPOTETTIAL CS REQUIRED: WYPOTETTIAL SCREWARD: NOTEY UNDER THE SECONDATE ACTUAL NOTEY UNDER THE SECONDATE ACTUAL SECONDATE ACTUAL SECO	VOLUMES (AS APPROPRIATE)			
TORY (AS REQUIRED) SREQUIRED) REQUIRED T T VEMENT (AS REQUIRED) INT POTENTIAL OR ACTUAL: NOTIFY UNDER THE RECONDANCE WES. CCORDANCE WES. CCORDANCE WES. ICAUSE ONSITE IED IED IED ICENTIFY THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE THE THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE THE REMAINING LASSOCIATION GUIDELINES. ICENTIFY THAT THIS EROSION AND SEDIMENT CONTROL THE REMAINING HAS BEEN DESIGNED IN ACCORDANCE WITH THE THE REMAINING LASSOCIATION GUIDELINES. ICENTIFY THAT THIS EROSION AND SEDIMENT CONTROL THE REMAINING HAS BEEN DESIGNED IN ACCORDANCE WITH THE THE REMAINING LASSOCIATION GUIDELINES. ICENTIFY THAT THIS EROSION AND SEDIMENT CONTROL THE REMAINING HAS BEEN DESIGNED IN ACCORDANCE WITH THE THE REMAINING HAS BEEN DESIGNED IN ACCORDANCE WITH THE REMAINING HAS BEEN DESIGNED IN ACCORDANCE WITH THE THE THE THE THE THE THE THE THE THE	D			
IN POPULATIONAL EROSION AND SEDIMENT CONTROL AED IED ICERTIFY THAT THIS EROSION AND SEDIMENT CONTROL IED IED ICERTIFY THAT THIS EROSION AND SEDIMENT CONTROL IED IED ICERTIFY THAT THIS EROSION AND SEDIMENT CONTROL IED IED ICERTIFY THAT THIS EROSION CONTROL ASSOCIATION IED IED ICERTIFY THAT THIS EROSION CONTROL ASSOCIATION IED IED ICERTIFY THAT THIS EROSION CONTROL ASSOCIATION IED IED IED IED IED IED IED IE	D)			
REQUIRED) ACE TY VEMENT (AS REQUIRED) WY POTENTIAL OR ACTUAL NOTIFY UNDER THE TECTION ACT 1994 SEDIMENT S RELEASED ACCORDANCE WES. TORS 0 EXPECTED CAUSE ONSITE IED IED IED IED ICERTIFY THAT THIS EROSION AND SEDIMENT CONTROL CAUSE ONSITE IED IED ICERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. ICERTIFY THAT THIS EROSION CONTROL ASSOCIATION GUIDELINES. ICERTIFY THAT THIS EROSION CONTROL ASSOCIATION GUIDELINES. ICERTIFY THAT THIS EROSION CONTROL ASSOCIATION ICERTIFY THAT THIS EROSION CONTROL ASSOCIATION INTERNATIONAL EROSION CONTROL ASSOCIATION ICERTIFY CLARK (CPESC 6089)				
WEIL Important (AS REQUIRED) WY POTENTIAL OR ACTUAL NOTIFY UNDER THE TECTION ACT 1994 SEDIMENT SEDIMENT S RELASED ACCORDANCE 0 EXPECTED 0 EXPECTED 1 CAUSE ONSITE HED IED IED IED ICAUSE ONSITE IED IED IED IED IED IED IED ICAUSE ONSITE IED				
INTERPRETATION CATTALL INTERPRETATION ACT 1994				
INTERPORTING OF ACTUAL NOTIFY UNDER THE DED SEDIMENT S RELEASED ACCORDANCE WES. 0 EXPECTED 0 EXPECTED 0 EXPECTED 0 EXPECTED 0 EXPECTED 1 CAUSE ONSITE IED IED IED IED IED IED IED IE				
Description Act 1994 DN SEDIMENT S RELEASED ACCORDANCE WES. IOD IED				
SEDIMENT S RELEASED ACCORDANCE MES. TORS 0 EXPECTED AED AED ICERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DERWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. I.C.L. TERRY CLARK (CPESC 6069) I.C.L. T	NOTIFY UNDER THE			
SEDIMENT S RELEASED ACCORDANCE MES. TORS 0 EXPECTED AED AED ICERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DERWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. I.C.L. TERRY CLARK (CPESC 6069) I.C.L. T				
SEDIMENT S RELEASED ACCORDANCE MES. TORS 0 EXPECTED AED AED ICERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DERWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. I.C.L. TERRY CLARK (CPESC 6069) I.C.L. T				
SEDIMENT S RELEASED ACCORDANCE MES. TORS 0 EXPECTED AED AED ICERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DERWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. I.C.L. TERRY CLARK (CPESC 6069) I.C.L. T	<u> </u>			
ICCORDANCE VES. TORS 0 EXPECTED ICAUSE ONSITE IED IED IED ICAUSE ONSITE ICAUSE ONSITE ICAUSE ONSITE ICAUSE ONSITE ICAUSE ON AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. ICAU TERRY CLARK (CPESC 6089) ICAU TERRY CLARK (CPESC 6089)				
MES. TORS 0 EXPECTED ICAUSE ONSITE HED HED HED I CERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. I.C.L. TERRY CLARK (CPESC 6069) MIR-1001 SHELT NUMBER REV C 7210 REV REV REV				
MES. TORS 0 EXPECTED ICAUSE ONSITE HED HED HED I CERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. I.C.L. TERRY CLARK (CPESC 6069) MIR-1001 SHELT NUMBER REV C 7210 REV REV REV				
ICAUSE ONSITE IED IED IED ICAUSE ONSITE ICAUSE				
I CAUSE ONSITE IED IED IED I CERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. J.C.L. TERRY CLARK (CPESC 6089) INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. J.C.L. TERRY CLARK (CPESC 6089) INTERNATIONAL EROSION DEVELOPMENT				
I CERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. J. J. L. TERRY CLARK (CPESC 6089) ISION DEVELOPMENT				
I CERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. J. J. L. TERRY CLARK (CPESC 6089) ISION DEVELOPMENT				
I CERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. J. J. L. TERRY CLARK (CPESC 6089) ISION DEVELOPMENT				
I CERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. J. J. L. TERRY CLARK (CPESC 6089) ISION DEVELOPMENT				
I CERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. J. J. L. TERRY CLARK (CPESC 6089) ISION DEVELOPMENT				
I CERTIFY THAT THIS EROSION AND SEDIMENT CONTROL DRAWING HAS BEEN DESIGNED IN ACCORDANCE WITH THE INTERNATIONAL EROSION CONTROL ASSOCIATION GUIDELINES. J. J. L. TERRY CLARK (CPESC 6089) ISION DEVELOPMENT				
AC QLD PTY LTD VAC QLD PTY LTD UNBER USUAL STOREMENT UNBER USUAL STORE USUAL STOREMENT USUAL S	iED			
AC QLD PTY LTD VAC QLD PTY LTD UNBER USUAL STOREMENT UNBER USUAL STORE USUAL STOREMENT USUAL S				
AC QLD PTY LTD VAC QLD PTY LTD UNBER USUAL STOREMENT UNBER USUAL STORE USUAL STOREMENT USUAL S				
AC QLD PTY LTD VAC QLD PTY LTD UNBER USUAL STOREMENT UNBER USUAL STORE USUAL STOREMENT USUAL S				
AC QLD PTY LTD VAC QLD PTY LTD UNBER USUAL STOREMENT UNBER USUAL STORE USUAL STOREMENT USUAL S				
AC QLD PTY LTD VAC QLD PTY LTD UNBER USUAL STOREMENT UNBER USUAL STORE USUAL STOREMENT USUAL S				
AC QLD PTY LTD VAC QLD PTY LTD ISION DEVELOPMENT JR CLARK (CPESC 6089) JOB CODE MIR-1001 SHEET NUMBER C 710 P	IED			
AC QLD PTY LTD VAC QLD PTY LTD ISION DEVELOPMENT JR CLARK (CPESC 6089) JOB CODE MIR-1001 SHEET NUMBER C 710 P				
AC QLD PTY LTD ISION DEVELOPMENT		THE INTERNATIONAL EROSION C		
AC QLD PTY LTD ISION DEVELOPMENT SHEET NUMBER REV C 710 P				
ISION DEVELOPMENT MIR-1001		J. Clark TER	RY CLARK (CPESC 6	089)
ISION DEVELOPMENT	AC QLD PTY LTD		JOB CODE	
SHEET NUMBER REV			MIR-10	01
C710 P			SHEET NUMBER	REV
	- NUTES AND DETAILS		-	

DRAIN CALCULATION TABLE

DRAIN ID	CATCH AREA (HA)	ARI	Cari	TIME OF CONC (MINS)	lari	FLOW - Q (m ³ /s)	LONG. SLOPE (m/m)	BASE WIDTH	SIDE SLOPE 1 (1 in x)	SIDE SLOPE 2 (1 in x)	LINING	MANNING ROUGH COEFF	MAX PERM	Construction conversion	DEPTH OF FLOW (m)	DEPTH WITH F/BOARD (m)	DRAIN TOP WIDTH (m)
DWD-1	1.33	2	0.6	10	108	0.24	0.09	1.2	2	2	Vital HR - 2L/m2	0.02	2.5	2.42	0.07	0.22	2.09
DWD-2	6.48	2	0.6	20	79	0.85	0.07	2	2	2	Turf	0.04	2	1.92	0.19	0.34	3.35

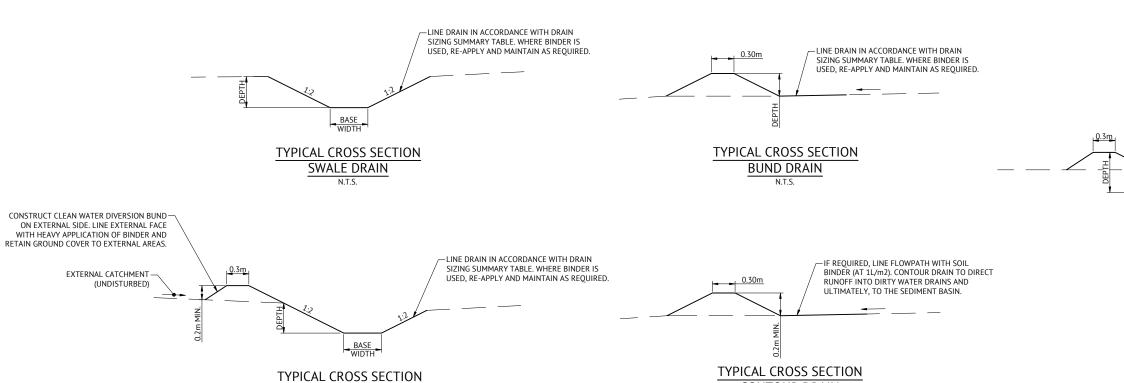

DRAIN SIZING SUMMARY TABLE

DRAIN ID	MINIMUM DEPTH (m)	BASE WIDTH (m)	BATTER SLOPE (1 IN)	TEMPORARY DRAIN LINING
DWD-01	0.30 1.20	1.20	2.0	VITAL HR (OR EQUIVALENT) APPLIED AT A MINIMUM 20% DILLUTION (2L OF POLYMER PER 1 SQM OF DRAINAGE SWALE ALTERNATIVELY VITAL STONEWALL (OR EQUIVALENT), APPLIE
DWD-02	0.35	2.00	2.0	AT A MINIMUM 40% DILLUTION (4L OF POLYMER PER 1 SQM OF DRAINAGE SWALE). APPLICATION OF POLYMER WITHIN DWD-02 TO BE UNDERTAKEN UNTIL TURF INSTALLED AS POST BULK EARTHWORKS TEMPORARY LINING OPTION.

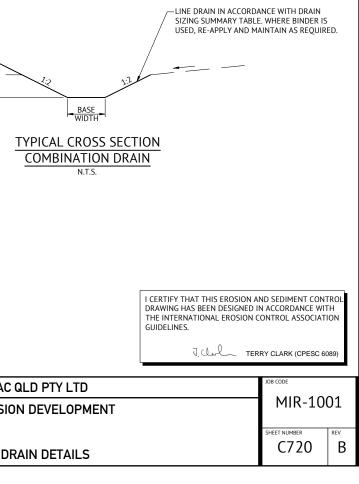
NOTE: DRAIN SIZING (INCLUDING DEPTH NOMINATED ABOVE) DOES NOT ACCOUNT FOR INSTALLATION OF CHECK DAMS. THE NOMINATED DRAIN LINING IS BASED ON CALCULATED VELOCITIES AND IS SUFFICIENT TO FUNCTION IN A NON-EROSIVE MANNER WITHOUT CHECK DAMS. IF CHECK DAMS ARE TO BE INSTALLED, DRAIN DIMENSIONS ARE TO BE INCREASED TO PROVIDE A MINIMUM ADDITIONAL 0.3m DEPTH.

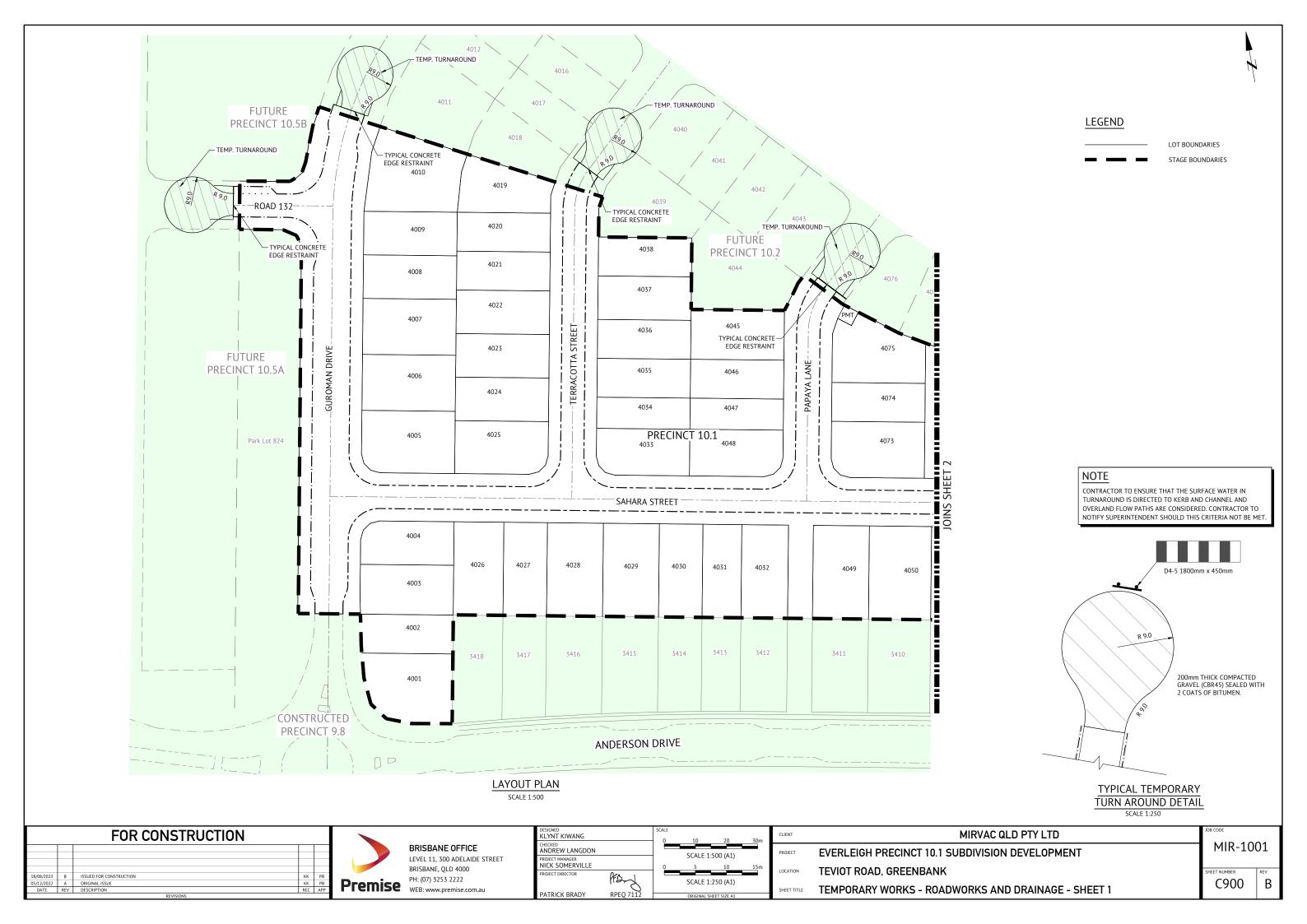
SWALE DRAIN WITH EXTERNAL DIVERSION

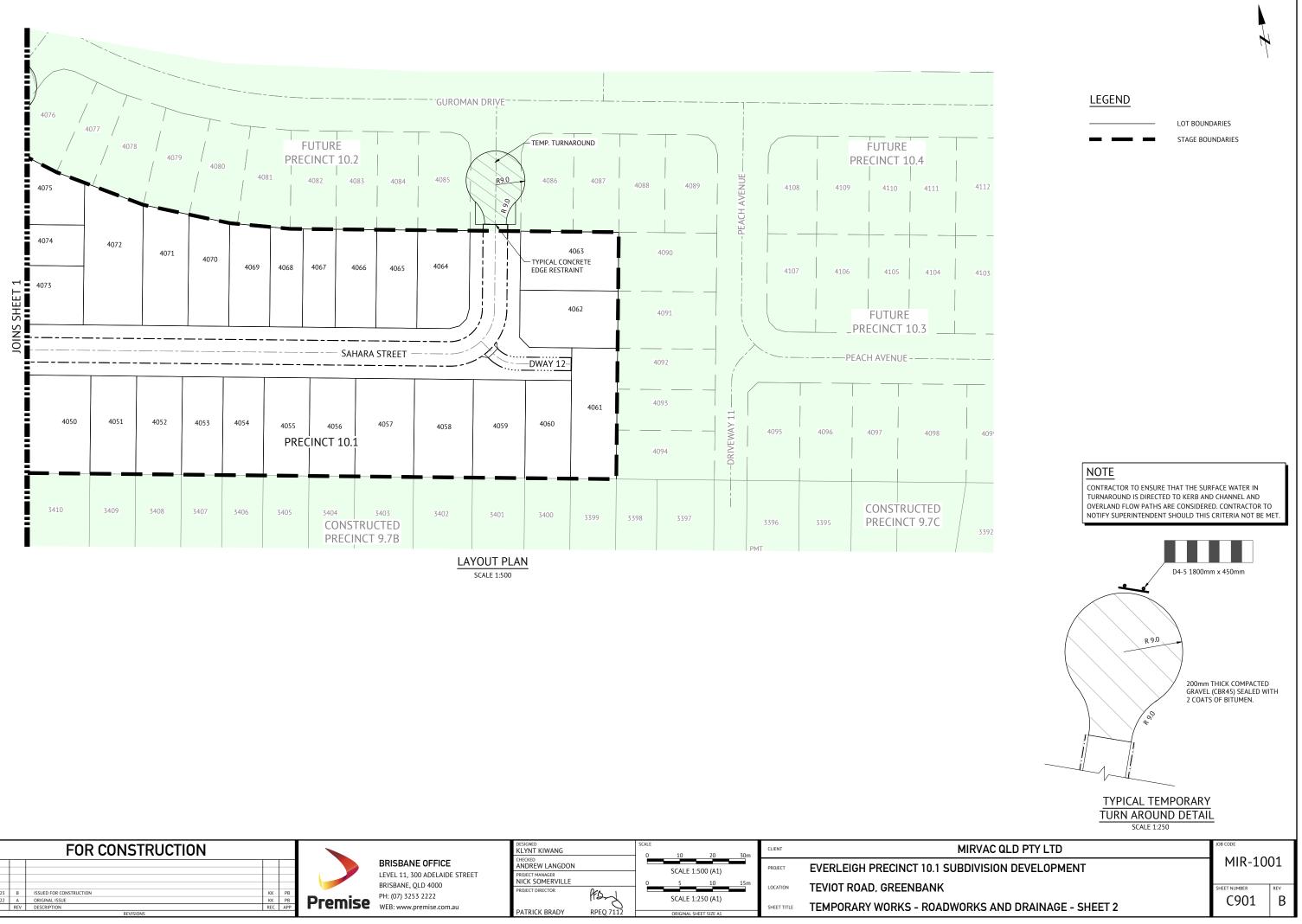
N.T.S.



CONTOUR DRAIN


N.T.S.


CHECK DAM SPACING - (WHERE ORDERED)


CIAZALE	SPACING INTERVAL (m)								
SWALE GRADE (%)	200mm	300mm	400mm	500mm	600mm				
GRADE (%)	HIGH HIGH		HIGH	HIGH	HIGH				
0.5	40	60	80	100	120				
1.0	20	30	40	50	60				
2.0	10	<mark>1</mark> 5	20	25	30				
3.0	6.7	10	13	17	20				
4.0	5.0	7.5	10	13	15				
5.0	4.0	6.0	8.0	10	12				
10.0	2.0	3.0	4.0	5.0	6.0				
15.0	1.3	2.0	2.7	3.3	4.0				

I	FOR CONSTRUCTION				DESIGNED DONNY WANG		SCALE	CLIENT	MIRVAC G
l				BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	CHECKED MARK DAVIS PROJECT MANAGER		-	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVISION
_	18/08/2023 B ISSUED FOR CONSTRUCTION 1	KK PB		BRISBANE, QLD 4000	NICK SOMERVILLE PROJECT DIRECTOR	PFD	_	LOCATION	TEVIOT ROAD, GREENBANK
ł	05/12/2022 A ISSUED FOR APPROVAL DATE REV DESCRIPTION	KK PB REC APP	Premise	WEB: www.premise.com.au	PATRICK BRADY	RPEQ 7112	ORIGINAL SHEET SIZE A1	SHEET TITLE	EROSION AND SEDIMENT CONTROL DRA

	FOR CONSTRUCTION			DESIGNED KLYNT KIWANG		SCALE 0	10 20 30m	CLIENT	MIRVA
			BRISBANE OFFICE LEVEL 11, 300 ADELAIDE STREET	CHECKED ANDREW LANGDON PROJECT MANAGER			5CALE 1:500 (A1)	PROJECT	EVERLEIGH PRECINCT 10.1 SUBDIVIS
18/08/2023 B	ISSUED FOR CONSTRUCTION KK PB		BRISBANE, QLD 4000 PH: (07) 3253 2222	NICK SOMERVILLE PROJECT DIRECTOR	PFD	0	5 10 15m	LOCATION	TEVIOT ROAD, GREENBANK
05/12/2022 A DATE REV	ORIGINAL ISSUE KK PB DESCRIPTION REVISIONS REC API	Premise	WEB: www.premise.com.au	PATRICK BRADY	RPEO 7112		SCALE 1:250 (A1)	SHEET TITLE	TEMPORARY WORKS - ROADWORKS